Search results

1 – 4 of 4
Article
Publication date: 15 February 2019

Muhammad Nubli Zulkifli, Fuaida Harun and Azman Jalar

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer…

Abstract

Purpose

This paper aims to analyze the effect of surface roughness and hardness of leadframe on the bondability of gold (Au) wedge bond using in situ inspection of laser interferometer and its relationship with the deformation and wire pull strength.

Design/methodology/approach

The in situ inspection of ultrasonic vibration waveform through the changes of vertical axis (y-axis) amplitude of wire bonder capillary was carried out using laser interferometer to analyze the formation of Au wedge bond. The relationship between the changes of ultrasonic waveform of capillary with the deformation and the pull strength was analyzed to evaluate the bondability of Au wedge bonds.

Findings

It was observed that the changes in vertical axis amplitude of ultrasonic vibration waveform of wire bonder capillary can be used to describe the process of bonding formation. The loss of ultrasonic energy was exhibited in ultrasonic vibration waveform of wire bonding on leadframe that has higher value of roughness (leadframe A) as compared to that of leadframe that has lower value of roughness (leadframe B). The lower pull strength obtained by Au wedge bond further confirms the reduction of bond formation because of the higher deformation on leadframe A as compared to that of leadframe B.

Originality/value

The relationship between in situ measurement using laser interferometer with the bondability or deformation and wire pull strength of Au wedge bonds on different surface roughness and hardness of leadframes is still lacking. These findings provide a valuable data in analyzing the bonding mechanisms that can be identified based on the in situ measurement of ultrasonic vibration and the bondability of Au wedge bonds.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 December 2017

Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and R. Ismail

The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller…

Abstract

Purpose

The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller sizing trend of solder joint. The purpose of this paper is to investigate the relationship between tensile and nanoindentation tests toward the mechanical properties and deformation behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.

Design/methodology/approach

Tensile test with different strain rates of 1.5 × 10-4 s-1, 1.5 × 10-3 s-1, 1.5 × 10-2 s-1 and 1.5 × 10-1 s-1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress–strain curves and mechanical properties such as yield strength (YS), ultimate tensile strength (UTS) and elongation were determined from the tensile test. Load-depth (P-h) profiles and micromechanical properties, namely, hardness and reduced modulus, were obtained from nanoindentation test. In addition, the deformation mechanisms of SAC305 lead-free solder wire were obtained by measuring the range of creep parameters, namely, stress exponent and strain rate sensitivity, using both of tensile and nanoindentation data.

Findings

It was observed that qualitative results obtained from tensile and nanoindentation tests can be used to identify the changes of the microstructure. The occurrence of dynamic recrystallization and the increase of ductility obtained from tensile test can be used to indicate the increment of grain refinement or dislocation density. Similarly, the occurrence of earliest pop-in event and the highest occurrence of pop-in event observed from nanoindentation also can be used to identify the increase of grain refinement and dislocation density. An increment of strain rates increases the YS and ultimate UTS of SAC305 solder wire. Similarly, the variation of hardness of SAC305 solder wire has the similar trend or linear relationship with the variation of YS and UTS, following the Tabor relation. In contrast, the variation of reduced modulus has a different trend compared to that of hardness. The deformation behavior analysis based on the Holomon’s relation for tensile test and constant load method for nanoindentation test showed the same trend but with different deformation mechanisms. The transition of responsible deformation mechanism was obtained from both tensile and nanoindentation tests which from grain boundary sliding (GBS) to grain boundary diffusion and dislocation climb to grain boundary slide, respectively.

Originality/value

For the current analysis, the relationship between tensile and nanoindentation test was analyzed specifically for the SAC305 lead-free solder wire, which is still lacking. The findings provide a valuable data, especially when comparing the trend and mechanism involved in bulk (tensile) and localized (nanoindentation) methods of testing.

Details

Soldering & Surface Mount Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 April 2017

Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and Roslina Ismail

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of…

Abstract

Purpose

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.

Design/methodology/approach

Tensile tests with different strain rates of 1.5 × 10−6, 1.5 × 10−5, 1.5 × 10−4, 1.5 × 10−3, 1.5 × 10−2 and 1.5 × 10−1 s−1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress-strain curves and mechanical properties such as yield strength, ultimate tensile strength and elongation were determined from the tensile tests. A microstructure analysis was performed by measuring the average grain size and the aspect ratio of the grains.

Findings

It was observed that higher strain rates showed pronounced dynamic recrystallization on the stress-strain curve. The increase in the strain rates also decreased the grain size of the SAC305 solder wire. It was found that higher strain rates had a pronounced effect on changing the deformation or shape of the grain in a longitudinal direction. An increase in the strain rates increased the tensile strength and ductility of the SAC solder wire. The primary deformation mechanism for strain rates below 1.5 × 10−1 s−1 was grain boundary sliding, whereas the deformation mechanism for strain rates of 1.5 × 10−1 s−1 was diffusional creep.

Originality/value

Most of the studies regarding the deformation behaviour of lead-free solder usually consider the effect of the elevated temperature. For the current analysis, the effect of the temperature is kept constant at room temperature to analyze the deformation of lead-free solder wire solely because of changes of strain rates, and this is the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 January 2011

Muhammad Nubli Zulkifli, Zul Azhar Zahid Jamal and Ghulam Abdul Quadir

The purpose of this paper is to discuss the capability of finite element analysis (FEA) in performing the virtual thermal cycling reliability test to evaluate the reliability of…

Abstract

Purpose

The purpose of this paper is to discuss the capability of finite element analysis (FEA) in performing the virtual thermal cycling reliability test to evaluate the reliability of solder joints in a ball grid array (BGA) package.

Design/methodology/approach

Thermal cycling test has been used to evaluate the reliability or fatigue life of the solder joints in BGA package using commercially available FEA software, ANSYS™. The effect of different temperature cycling condition is studied by applying different value of dwell time and ramp rate. Two types of analyses are used namely, the physics‐based analysis and the statistical‐based analysis. Two screening design methods namely, central composite design (CCD) and Box‐Behnken Matrix Design method are used to isolate the most important factors amongst six selected design variables. The optimization process is carried out using response surface methodology (RSM).

Findings

It is observed that changes in ramp rate produce significant effect in solder fatigue life than changes in dwell time but the dwell time at high temperature has a negligible contribution to solder fatigue life. It has been found that the thickness of the mold has a significant effect on the performance of the solder joint reliability (more than 50 percent) as compared to that from other factors. Besides, the effect of individual factor, the interaction among factors also changes the solder joint reliability. RSM based on Box‐Behnken Matrix design offers the highest characteristic solder joint fatigue life with a value of 2,861 cycles.

Originality/value

This paper provides a comprehensive method to evaluate the reliability of solder joints in terms of physics and statistical‐based analysis.

Details

Microelectronics International, vol. 28 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Year

All dates (4)

Content type

1 – 4 of 4