Search results

1 – 10 of 10
Article
Publication date: 26 July 2013

Shafaat Ahmed Bazaz, Nayyer Abbas, Muhammad Bilal Saif and Nisar Ahmad

This paper aims to present design and characterization of a micrograsping system which is capable of safely grasping micro‐objects.

Abstract

Purpose

This paper aims to present design and characterization of a micrograsping system which is capable of safely grasping micro‐objects.

Design/methodology/approach

The proposed micrograsping system consists of novel MEMS based microgripper integrated with capacitive contact sensor (fabricated in standard micromachining process SOI‐MUMPs), sense electronics, a controller, high voltage actuation circuit and graphical user interface.

Findings

Due to the improvement in the lateral comb‐drive design, the actuator requires low actuation voltages in the range of 0‐45 V. This requires a simple and low power actuation circuitry. Capacitive feedback control mechanism is used in the sensor to detect the contact between the jaws and micro‐object while providing high values of the capacitance.

Practical implications

The designed sense electronics can sense the capacitance ranging from 0‐330 fF. Due to the availability of integrated contact sensor, objects ranging from 54 μm to 70 μm can be gripped safely with the applied maximum force of 220 μN at the tip of the gripper.

Originality/value

The performance of the microgripper, controller algorithm and associated electronics were experimentally quantified through the gripping of 65 μm sized human hair.

Details

Assembly Automation, vol. 33 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 March 2020

Muhammad Sohail and Rabeeah Raza

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport…

Abstract

Purpose

The current determination is committed to characterize the boundary layer flow of Williamson nanofluid prompted by nonlinear strained superficial under heat and mass transport mechanisms. Buongiorno model is presented to view the influence of nanoparticles in fluid flow. Scrutiny has been conceded under the action of the transversely smeared magnetic field. Heat and mass relocation exploration are conducted in the companionship of radiation effects and actinic compensation.

Design/methodology/approach

Similarity variable is designated to transmute nonlinear partial differential equations of conservation laws of mass, momentum, energy and species into ordinary dimensional expressions. These constitutive and complicated ordinary differential expressions assessing the flow situation are handled efficaciously by manipulating Runge–Kutta–Fehlberg procedure (RK-5) with shooting routine.

Findings

The graphical demonstration is deliberated to scrutinize the variation in velocity, temperature and concentration profiles with respect to flow regulating parameters. Numerical data are displayed through tables in order to surmise variation in skin friction coefficient and Nusselt number. The augmenting values of fluid parameter and magnetic parameter reduces the horizontal fluid velocity, whereas normal velocity upsurges for mounting values of stretching ratio parameter. Moreover, mounting values of radiation parameter and thermophoresis parameter upsurges the temperature profile, whereas, growing values of Prandtl number lessen the temperature field.

Practical implications

The current exploration is used in many industrial and engineering applications in order to discuss the transport phenomenon.

Originality/value

Flow over a nonlinear stretched surface has numerous applications in the industry. The present attempt examines the combined influence of various physical characteristics for the flow of Williamson fluid and no such attempt exist in the available literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 June 2019

Arif Hussain, Muhammad Yousaf Malik, Mair Khan and Taimoor Salahuddin

The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.

Abstract

Purpose

The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface.

Design/methodology/approach

The fluid momentum problem is mathematically formulated by using the Prandtl–Eyring constitutive law. Also, the non-Fourier heat flux model is considered to disclose the heat transfer characteristics. The governing problem contains the nonlinear partial differential equations with appropriate boundary conditions. To facilitate the computation process, the governing problem is transmuted into dimensionless form via appropriate group of scaling transforms. The numerical technique shooting method is used to solve dimensionless boundary value problem.

Findings

The expressions for dimensionless velocity and temperature are found and investigated under different parametric conditions. The important features of fluid flow near the wall, i.e. wall friction factor and wall heat flux, are deliberated by altering the pertinent parameters. The impacts of governing parameters are highlighted in graphical as well as tabular manner against focused physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison is presented to justify the computed results, it can be noticed that present results have quite resemblance with previous literature which led to confidence on the present computations.

Originality/value

The computed results are quite useful for researchers working in theoretical physics. Additionally, computed results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2020

Lijun Zhang, Muhammad Mubashir Bhatti and Efstathios E. Michaelides

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of…

Abstract

Purpose

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of electric and magnetic fields. The flow medium between the plates is porous. The effects of Joule heating and viscous energy dissipation are studied in the present study.

Design/methodology/approach

A semi-analytical/numerical method, the differential transform method, is used to obtain solutions for the system of the nonlinear differential governing equations. This solution technique is efficient and may be adapted to solve a variety of nonlinear problems in simple geometries, as it was confirmed by comparisons between the results using this method and those of a fully numerical scheme.

Findings

The results of the computations show that the Darcy–Brinkman–Forchheimer parameter and the third-grade fluid model parameter retards, whereas both parameters have an inverse effect on the temperature profile because the viscous dissipation increases. The presence of the magnetic field also enhances the temperature profile between the two plates but retards the velocity profile because it generates the opposing Lorenz force. A graphical comparison with previously published results is also presented as a special case of this study.

Originality/value

The obtained results are new and presented for the first time in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 January 2022

Muhammad Farrukh, Fanchen Meng, Ali Raza and Yihua Wu

This study aims to analyse the current trends and set the future research agenda in employee-level innovative work behaviour (IWB) research.

1695

Abstract

Purpose

This study aims to analyse the current trends and set the future research agenda in employee-level innovative work behaviour (IWB) research.

Design/methodology/approach

A portfolio of 910 publications on IWB collected from the Scopus database was systematically analysed using different bibliometric techniques.

Findings

Based on the performance analysis and science mapping of innovative work behaviour research, the study identifies the most prolific sources of IWB publications and lists several future research directions.

Originality/value

This paper could serve as one-stop information that may facilitate transdisciplinary endeavours by assisting scholars and practitioners in identifying peer-recognised publications and scholarly communities.

Details

Personnel Review, vol. 52 no. 1
Type: Research Article
ISSN: 0048-3486

Keywords

Article
Publication date: 13 December 2022

Abdul Hafaz Ngah, Tuan Mastiniwati Tuan Mansor, Cécile Gabarre, Samar Rahi, Shahbaz Khan and Rohana Ahmad

The purpose of the study is to identify factors influencing the continuance of use of non-halal certified cosmetics among Muslim university students in Malaysia.

1211

Abstract

Purpose

The purpose of the study is to identify factors influencing the continuance of use of non-halal certified cosmetics among Muslim university students in Malaysia.

Design/methodology/approach

The research framework was developed based on the stimulus–organism–response model. Self-administered questionnaires were distributed using a purposive sampling method among Muslim students in three universities in Malaysia. A total of 501 usable data were collected and analysed using Smart partial least squares.

Findings

The analysis revealed that celebrity endorsement positively influences attitude and brand image. Meanwhile, brand image has a positive effect on attitude and continuance of use of non-halal certified cosmetics. Additionally, attitude has a positive effect on the continuance of use behaviour. Regarding predictive power enhancement, brand image and attitude were found to have a mediation effect and sequential mediation effect on the relationship between celebrity endorsement and the continuance of use behaviour. Attitude weakens the relationship between attitude and the continuance of use of non-halal cosmetics among Muslim university students in Malaysia.

Practical implications

Findings will primarily benefit halal and non-halal cosmetic manufacturers providing stakeholders with fundamental predicting information related to customers’ continuance of use thus resulting in better marketing strategies.

Originality/value

This study is focused on predicting consumer behaviour towards halal products, as well as young Muslim consumers’ perspective towards non-halal cosmetics. Celebrity endorsement is introduced as a stimulus in the context of Muslim university students to predict their continuance of use behaviour of non-halal certified cosmetics. The investigation includes the moderating effect of religiosity for the relationship between attitude and continuance behaviour. Findings reveal the mediating effects of brand image and attitude as a mediator and sequential mediator for the relationship between celebrity endorsement and continuance of use behaviour. Contributions enrich the literature related to non-halal certified contexts.

Article
Publication date: 19 November 2021

Nur Adilah Liyana Aladdin and Norfifah Bachok

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the…

Abstract

Purpose

This paper aims to explore on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder by adding the effect of chemical reaction, B together with the magnetic field, M.

Design/methodology/approach

A set of reduced ordinary differential equations from the governing equations of partial differential equations is obtained through similarities requirements. The resulting equations are solved using bvp4c in MATLAB2019a. The impact of various physical parameters such as curvature parameter, ϒ, chemical reaction rate, B, magnetic field, M and Schmidt numbers, Sc on shear stress, f0 local heat flux, -θ(0) and mass transfer, -(0) also for velocity, f(η), temperature, θ(η) and concentration, ∅(η) profiles have been plotted and briefly discussed. In this work, some vital characteristics such as local skin friction, Cf, local Nusselt number, Nux and local Sherwood number, Shx are chosen for physical and numerical analysis.

Findings

The findings expose that the duality of solutions appears in a shrinking region ( ε < 0). The value of skin friction, heat transfer rate and mass transfer rate reduction for existing of M, but in contrary result obtain for larger ϒ, B and Sc. Furthermore, the hybrid nanofluid demonstrates better heat transfer compared to nanofluid.

Practical implications

The hybrid nanofluid has widened its applications such as in electronic cooling, manufacturing, automotive, heat exchanger, solar energy, heat pipes and biomedical, as their efficiency in the heat transfer field is better compared to nanofluid.

Originality/value

The findings on stagnation point flow of Ag-CuO/water over a horizontal stretching/shrinking cylinder with the effect of chemical reaction, B and magnetic field, M is new and the originality is preserved for the benefits of future researchers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Article
Publication date: 8 June 2021

Sanatan Das, Akram Ali and Rabindra Nath Jana

Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in…

Abstract

Purpose

Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in engineering and industrial domains. The purpose of this study to simulate numerically the magneto-nanofluid flow and heat transfer over a curved stretching surface. Heat transport is explored in the presence of viscous dissipation. At the curved surface, the convective boundary condition is adopted. Three different nanoparticles, namely, copper, aluminium oxide and titanium dioxide are taken into consideration because of easily available in nature.

Design/methodology/approach

The basic flow equations are framed in terms of curvilinear coordinates. The modelled partial differential equations are transformed into a system of non-linear ordinary differential equations by means of appropriate similarity transformation. The subsequent non-linear system of equations is then solved numerically by using the Runge–Kutta–Felhberg method with the shooting scheme via bvp4c MATLAB built-in function. Impacts of various physical parameters on velocity, pressure and temperature distributions, local skin-friction coefficient, local Nusselt number and wall temperature are portrayed through graphs and tables followed by a comprehensive debate and physical interpretation.

Findings

Graphical results divulge that augmenting values of the magnetic parameter cause a decline in velocity profiles and stream function inside the boundary layer. The magnitude of the pressure function inside the boundary layer reduces for higher estimation of curvature parameter, and it is also zero when the curvature parameter goes to infinity. Furthermore, the temperature is observed in a rising trend with growing values of the magnetic parameter and Biot number.

Practical implications

This research study is very pertinent to the expulsion of polymer sheet and photographic films, metallurgical industry, electrically-conducting polymer dynamics, magnetic material processing, rubber and polymer sheet processing, continuous casting of metals, fibre spinning, glass blowing and fibre, wire and fibre covering and sustenance stuff preparing, etc.

Originality/value

Despite the huge amount of literature available, but still, very little attention is given to simulate the flow configuration due to the curved stretching surface with the convective boundary condition. Very few papers have been examined on this topic and found that its essence inside the boundary layer is not any more insignificant than on account of a stretching sheet. A numerical comparison with the published works is conducted to verify the accuracy of the present study.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

All dates (10)

Content type

1 – 10 of 10