Search results

1 – 2 of 2
Open Access
Article
Publication date: 8 February 2018

Ismail Ismail, Muhammad Sohail, Hammad Gilani, Anwar Ali, Kiramat Hussain, Kamran Hussain, Bhaskar Singh Karky, Faisal Mueen Qamer, Waqas Qazi, Wu Ning and Rajan Kotru

The purpose of the study is to analyse the occurrence and distribution of different tree species in Gilgit-Baltistan, Pakistan, as a baseline for further inventories, and estimate…

9251

Abstract

Purpose

The purpose of the study is to analyse the occurrence and distribution of different tree species in Gilgit-Baltistan, Pakistan, as a baseline for further inventories, and estimate the biomass per species and plot. Furthermore, it aims to measure forest biodiversity using established formulae for tree species diversity index, richness, evenness and accumulative curve.

Design/methodology/approach

Field data were collected, including stratification of forest sample plots. Statistical analysis of the data was carried out, and locally appropriate allometric equations were applied for biomass estimation.

Findings

Representative circular 556 forest sample plots of 1,000 m2 contained 13,135 trees belonging to nine tree species with a total aboveground biomass of 12,887 tonnes. Sixty-eight per cent of the trees were found between 2,600 and 3,400 masl; approximately 63 per cent had a diameter at breast height equal to 30 cm, and 45 per cent were less than 12 m in height. The Shannon diversity index was 1.82, and Simpson’s index of diversity was 0.813.

Research limitations/implications

Rough terrain, long distances, harsh weather conditions and location of forest in steep narrow valleys presented challenges for the field crews, and meant that fieldwork took longer than planned.

Practical implications

Estimating biomass in Gilgit-Baltistan’s forests using locally developed allometric equations will provide transparency in estimates of forest reference levels, National Forest Monitoring System in Pakistan and devising Reducing Emissions from Deforestation and Forest Degradation national strategies and for effective implementation.

Originality/value

This paper presents the first detailed forest inventory carried out for the dry temperate and semi-arid cold region of Gilgit-Baltistan, Pakistan.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 17 July 2023

Kanza Abid, Zafar Iqbal Shams, Muhammad Suleman Tahir and Arif Zubair

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and…

Abstract

Purpose

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and buffalo's milk of two major cities, Karachi and Gujranwala, Pakistan to estimate metal intake by humans from this source.

Design/methodology/approach

In total, 48 milk samples from 2 cities were drawn from animals' udder to avoid contamination. Each sample was digested with nitric acid at 105 oC (degree Celsius) on a pre-heated electric hot plate to investigate the metals by atomic absorption spectroscopy (flame type). Air-acetylene technique analyzed chromium, cadmium and lead, and the hydride method analyzed arsenic in the milk samples.

Findings

The results revealed the highest mean lead concentration (19.65 ± 43.86 ppb) in the milk samples, followed by chromium (2.10 ± 2.33 ppb) and arsenic (0.48 ± 0.73 ppb). Cadmium was not detected in any sample, assuming cadmium's occurrence was below the detection level. The concentrations of all the metals in the samples of the two cities do not differ statistically. Lead concentrations in the buffalo's milk were higher than in cow's milk (p < 0.05). However, the concentrations of arsenic and chromium between buffalo's and cow's milk do not differ statistically. The present study reveals a lower level of metals in the milk than those conducted elsewhere. The mean concentrations of all the metals met the World Health Organization's (WHO) safety guidelines (1993).

Research limitations/implications

Although cadmium causes toxicity in the human body, cadmium could not be measured because cadmium's concentration was below the detection level, which is 1 ppb.

Practical implications

This study will help reduce the toxic metals in our environment, and the sources of heavy metals, particularly from the industrial sector could be identified. The feed and water consumed by the milking animals could be carefully used for feeding them.

Social implications

This study will help reduce the diseases and malfunction of human organs and organ systems since these heavy metals cause toxicity and carcinogenicity in humans. Arsenic and chromium cause cancer while lead causes encephalopathy (a brain disease).

Originality/value

The study reports heavy metal concentrations in the two attributes of four independent variables of raw milk samples that were scarcely reported from Pakistan.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Access

Only Open Access

Year

Content type

1 – 2 of 2