Search results

1 – 2 of 2
Open Access
Article
Publication date: 17 July 2023

Kanza Abid, Zafar Iqbal Shams, Muhammad Suleman Tahir and Arif Zubair

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and…

1044

Abstract

Purpose

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and buffalo's milk of two major cities, Karachi and Gujranwala, Pakistan to estimate metal intake by humans from this source.

Design/methodology/approach

In total, 48 milk samples from 2 cities were drawn from animals' udder to avoid contamination. Each sample was digested with nitric acid at 105 oC (degree Celsius) on a pre-heated electric hot plate to investigate the metals by atomic absorption spectroscopy (flame type). Air-acetylene technique analyzed chromium, cadmium and lead, and the hydride method analyzed arsenic in the milk samples.

Findings

The results revealed the highest mean lead concentration (19.65 ± 43.86 ppb) in the milk samples, followed by chromium (2.10 ± 2.33 ppb) and arsenic (0.48 ± 0.73 ppb). Cadmium was not detected in any sample, assuming cadmium's occurrence was below the detection level. The concentrations of all the metals in the samples of the two cities do not differ statistically. Lead concentrations in the buffalo's milk were higher than in cow's milk (p < 0.05). However, the concentrations of arsenic and chromium between buffalo's and cow's milk do not differ statistically. The present study reveals a lower level of metals in the milk than those conducted elsewhere. The mean concentrations of all the metals met the World Health Organization's (WHO) safety guidelines (1993).

Research limitations/implications

Although cadmium causes toxicity in the human body, cadmium could not be measured because cadmium's concentration was below the detection level, which is 1 ppb.

Practical implications

This study will help reduce the toxic metals in our environment, and the sources of heavy metals, particularly from the industrial sector could be identified. The feed and water consumed by the milking animals could be carefully used for feeding them.

Social implications

This study will help reduce the diseases and malfunction of human organs and organ systems since these heavy metals cause toxicity and carcinogenicity in humans. Arsenic and chromium cause cancer while lead causes encephalopathy (a brain disease).

Originality/value

The study reports heavy metal concentrations in the two attributes of four independent variables of raw milk samples that were scarcely reported from Pakistan.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2