Search results
1 – 1 of 1Khalid Iqbal and Muhammad Shehrayar Khan
In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.
Abstract
Purpose
In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.
Design/methodology/approach
Researchers contribute to solving this problem by a focus on advanced machine learning algorithms and improved models for detecting spam emails but there is still a gap in features. To achieve good results, features also play an important role. To evaluate the performance of applied classifiers, 10-fold cross-validation is used.
Findings
The results approve that the spam emails are correctly classified with the accuracy of 98.00% for the Support Vector Machine and 98.06% for the Artificial Neural Network as compared to other applied machine learning classifiers.
Originality/value
In this paper, Point-Biserial correlation is applied to each feature concerning the class label of the University of California Irvine (UCI) spambase email dataset to select the best features. Extensive experiments are conducted on selected features by training the different classifiers.
Details