Search results

1 – 1 of 1
Open Access
Article
Publication date: 9 May 2022

Khalid Iqbal and Muhammad Shehrayar Khan

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

11000

Abstract

Purpose

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

Design/methodology/approach

Researchers contribute to solving this problem by a focus on advanced machine learning algorithms and improved models for detecting spam emails but there is still a gap in features. To achieve good results, features also play an important role. To evaluate the performance of applied classifiers, 10-fold cross-validation is used.

Findings

The results approve that the spam emails are correctly classified with the accuracy of 98.00% for the Support Vector Machine and 98.06% for the Artificial Neural Network as compared to other applied machine learning classifiers.

Originality/value

In this paper, Point-Biserial correlation is applied to each feature concerning the class label of the University of California Irvine (UCI) spambase email dataset to select the best features. Extensive experiments are conducted on selected features by training the different classifiers.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 1 of 1