Search results

1 – 10 of over 9000
Article
Publication date: 3 February 2020

Hong Jun Li, Wei Jiang, Dehua Zou, Yu Yan, An Zhang and Wei Chen

In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability…

Abstract

Purpose

In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability control performance of the robot manipulator when conduct electric power operation, and effectively reduce the influence of disturbance factors on the robot motion control, this paper aims to presents a robust trajectory tracking motion control method for power cable robot manipulators based on sliding mode variable structure control theory.

Design/methodology/approach

Through the layering of aerial-online-ground robot three-dimensional control architecture, the robot joint motion dynamic model has been built, and the motion control model of the N-degrees of freedom robot system has also been obtained. On this basis, the state space expression of joint motion control under disturbance and uncertainty has been also derived, and the manipulator sliding mode variable structure trajectory tracking control model has also been established. The influence of the perturbation control parameters on the robot motion control can be compensated by the back propagation neural network learning, the stability of the controller has been analyzed by using Lyapunov theory.

Findings

The robot has been tested on a analog line in the lab, the effectiveness of sliding mode variable structure control is verified by trajectory tracking simulation experiments of different typical signals with different methods. The field operation experiment further verifies the engineering practicability of the control method. At the same time, the control method has the remarkable characteristics of sound versatility, strong adaptability and easy expansion.

Originality/value

Three-dimensional control architecture of underground-online-aerial robots has been proposed for industrial field applications in the ubiquitous power internet of things environment (UPIOT). Starting from the robot joint motion, the dynamic equation of the robot joint motion and the state space expression of the robot control system have been established. Based on this, a robot closed-loop trajectory tracking control system has been designed. A robust trajectory tracking motion control method for robots based on sliding mode variable structure theory has been proposed, and a sliding mode control model for the robot has been constructed. The uncertain parameters in the control model have been compensated by the neural network in real-time, and the sliding mode robust control law of the robot manipulator has been solved and obtained. A suitable Lyapunov function has been selected to prove the stability of the system. This method enhances the expansibility of the robot control system and shortens the development cycle of the controller. The trajectory tracking simulation experiment of the robot manipulator proves that the sliding mode variable structure control can effectively restrain the influence of disturbance and uncertainty on the robot motion stability, and meet the design requirements of the control system with fast response, high tracking accuracy and sound stability. Finally, the engineering practicability and superiority of sliding mode variable structure control have been further verified by field operation experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 October 2019

Xiangyu Liu, Chunyan Zhang, Cong Ni and Chenhui Lu

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be…

Abstract

Purpose

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be changed to different modes according to the terrain.

Design/methodology/approach

Based on the topological analysis, singularity analysis, feasibility analysis, gait analysis and the motion strategy based on motor time-sharing control, the paper theoretically verified that the robot can switch between the four motion modes.

Findings

The robot integrates four-bar walking, self-deforming and four-bar and six-bar rolling modes. A series of simulation and prototype experiment results are presented to verify the feasibility of multiple motion modes of the robot.

Originality/value

The work presented in this paper provides a good theoretical basis for further exploration of multiple mode mobile robots. It is an attempt to design the multi-mode mobile robot based on single loop kinematotropic mechanisms. It is also a kind of exploration of the new unknown movement law.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 November 1941

Charles B. Lyman

MUCH reference is made in the aeronautical field to the flutter problem and the subject is receiving the attention of many persons engaged in research, testing, and design. Many…

Abstract

MUCH reference is made in the aeronautical field to the flutter problem and the subject is receiving the attention of many persons engaged in research, testing, and design. Many aeronautical engineers are well acquainted with some aspect of the problem, and although only a few are concerned with its several phases it is safe to say that all aeronautical men regard it with some degree of interest. It is fitting, therefore, that although it has been adequately treated by many authors from other points of view, a statement be here made summarizing the flutter problem as one of the aeroplane designer. In order that the exact nature of this problem be appreciated it is first necessary that a few of the fundamentals be reviewed.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 11 July 2018

Zhaotian Wang, Yezhuo Li and Yan-An Yao

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is…

Abstract

Purpose

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is suitable to this multi-mode mobile robot, is proposed based on chessboard-shaped grid division (CGD).

Design/methodology/approach

Based on the kinematic analysis and motion properties of the mobile parallel robot, the motion strategy based on CGD path planning algorithm of a mobile robot with two rolling modes moving to a target position is divided into two parts, which are local self-motion planning and global path planning. In the first part, the mobile parallel robot can move by switching and combining the two rolling modes; and in the second part, the specific algorithm of the global path planning is proposed according to the CGD of the moving ground.

Findings

The assistant robot, which is a novel 4-RSR mobile parallel robot (where R denotes a revolute joint and S denotes a spherical joint) integrating operation and rolling locomotion (Watt linkage rolling mode and 6R linkage rolling mode), can work as a moving spotlight or worktable. A series of simulation and prototype experiment results are presented to verify the CGD path planning strategy of the robot, and the performance of the path planning experiments in simulations and practices shows the validation of the path planning analysis.

Originality/value

The work presented in this paper is a further exploration to apply parallel mechanisms with two rolling modes to the field of assistant rolling robots by proposing the CGD path planning strategy. It is also a new attempt to use the specific path planning algorithm in the field of mobile robots for operating tasks.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 September 2021

Ke Lu, Shanyong Zhao, YUjie Ma, Shangjing Wu and Cheng da Su

This paper aims to present an investigation on flight quality analysis and design of tilt-rotor aircraft combined with corresponding flight quality specifications.

Abstract

Purpose

This paper aims to present an investigation on flight quality analysis and design of tilt-rotor aircraft combined with corresponding flight quality specifications.

Design/methodology/approach

From the perspective of modal characteristics of tilt-rotor aircraft, it focuses on the analysis of the change rules of the longitudinal short-term motion mode, lateral roll convergence mode, spiral mode and Dutch roll mode. Then, the flight quality design research is carried out using the explicit model tracking control method. The quantitative relationship between flight quality requirements and explicit model is established. Accordingly, the closed-loop flight quality of XV-15 tilt-rotor aircraft is evaluated.

Findings

The stability of spiral mode is the result of the interaction of various aerodynamic derivatives and spiral instability occurs in helicopter mode. The other motion modes are stable in full flight mode and meet the requirements of level 1 specified in ADS-33E-PRF and MIL-F-8785C flight quality specifications. There is a quantitative relationship between flight quality requirements and explicit model, and the flight quality of tilt-rotor aircraft is improved through the explicit model tracking control method.

Practical implications

The presented analysis results showed the influence of motion modes and flight quality and the effectiveness of explicit model tracking control method in flight quality improvement, which could be considered as new information for further flight quality design of tilt-rotor aircraft.

Originality/value

The originality of the paper lies in the proposed design and analysis method of the flight quality of tilt-rotor aircraft from the direction of the influence of its aerodynamic derivatives and motion modes.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2019

B.M. Sayed, Mohamed Fanni, Mohamed S. Raessa and Abdelfatah Mohamed

This paper aims to design and control of a novel compact transportation system called the “wearable vehicle”. The wearable vehicle allows for traversing all types of terrains…

Abstract

Purpose

This paper aims to design and control of a novel compact transportation system called the “wearable vehicle”. The wearable vehicle allows for traversing all types of terrains while transporting one's luggage in a comfortable and efficient manner.

Design/methodology/approach

The proposed design consists of a lower limb exoskeleton carrying two motorized wheels and two free wheels installed alongside its feet. This paper presents a detailed description of the system with its preliminary design and finite element analysis. Moreover, the system has been optimally designed to decrease wearable vehicle’s total weight, consequently leading to a reduction in motor size. Finally, two controllers have been designed to achieve stable operation of the wearable vehicle while walking. A PD controller with gravity compensation has been designed to ensure that the wearable vehicle tracks human motion, while a PID controller has been designed to ensure that the zero moment point is close to the center of the system’s support polygon.

Findings

Experimental tests were carried out to check the wearable vehicle concept. The obtained results prove the feasibility of the proposed wearable vehicle from the design, dynamics and control viewpoints.

Practical implications

This proposed wearable vehicle’s purpose is for traveling faster with less effort than normal walking. When a human comes across a flat open ground, the wearable vehicle can be used as a vehicle. However, when a human enters crowded traffic, an unstructured area or other obstacles like stairs, the vehicle can be switched into walking mode.

Originality/value

The wearable vehicle has seven DOFs exoskeletons, two motorized wheels, two free wheels and a foldable seat. It is used as a vehicle via its motorized and free wheels to travel fast with minimal effort. In addition, the human can switch easily into walking mode, if there is unstructured terrain to be traversed. Furthermore, an illustration of system's mechanisms and main feature parameters are presented to become acquainted with the ultimate benefits of the new system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 2022

Tandralee Chetia, Dhayalan Rajaram and Kumaran G. Sreejalekshmi

Flapping-wing vehicles show various advantages as compared to fixed wing vehicles, making flapping-wing vehicles' study necessary in the current scenario. The present study aims…

Abstract

Purpose

Flapping-wing vehicles show various advantages as compared to fixed wing vehicles, making flapping-wing vehicles' study necessary in the current scenario. The present study aims to provide guidelines for fixing geometric parameters for an initial engineering design by a simple aerodynamic and flight dynamic parametric study.

Design/methodology/approach

A mathematical analysis was performed to understand the aerodynamics and flight dynamics of the micro-air vehicle (MAV). Only the forces due to the flapping wing were considered. The flapping motion was considered to be a combination of the pitching and plunging motion. The geometric parameters of the flapping wing were varied and the aerodynamic forces and power were observed. Attempts were then made to understand the flight stability envelope of the MAV in a forward horizontal motion in the vertical plane with similar parametric studies as those conducted in the case of aerodynamics.

Findings

From the aerodynamic study, insights were obtained regarding the interaction of design parameters with the aerodynamics and feasible ranges of values for the parameters were identified. The flapping wing was found to have neutral static stability. The flight dynamic analysis revealed the presence of an unstable oscillatory mode, a stable fast subsidence mode and a neutral mode, in the forward flight of the MAV. The presence of unstable modes highlighted the need for active control to restore the MAV to equilibrium from its unstable state.

Research limitations/implications

The study does not take into account the effects of control surfaces and tail on the aerodynamics and flight dynamics of the MAV. There is also a need to validate the results obtained in the study through experimental means which shall be taken up in the future.

Practical implications

The parametric study helps us to understand the extent of the impact of the design parameters on the aerodynamics and stability of the MAV. The analysis of both aerodynamics and dynamic stability provides a holistic picture for the initial design. The study incorporates complex mathematical equations and simplifies such to understand the aerodynamics and flight stability of the MAV from an engineering perspective.

Originality/value

The study adds to already existing knowledge on the design procedures of a flapping wing.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 2 May 2022

Yongliang Zhang, Jibei Ma, Xingchong Chen and Yun Wang

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force…

Abstract

Purpose

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.

Design/methodology/approach

Taking a 490 m deck type railway steel truss arch bridge as the background, the dynamic calculation model of the whole bridge was established by SAP2000 software. The seismic response analyses under one-, two- and three-dimension (1D, 2D and 3D) uniform ground motion excitations were carried out.

Findings

For the steel truss arch bridge composed of multiple arch ribs, any single direction ground motion excitation will cause large axial force in the chord of arch rib. The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation. The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation. For the bottom chord of arch rib, the arch foot is the weak part of earthquake resistance, but for the upper chord of arch rib, the arch foot, arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts. The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force, but the normal stress of the upper chord of the arch rib is caused by the axial force, in-plane and out of plane bending moment.

Originality/value

The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.

Article
Publication date: 11 January 2022

An Ping, Chunyan Zhang and Jie Yang

This study aims to make the mobile robot better adapt to the patrol and monitoring in industrial field substation area, a multi-mode mobile carrying mechanism which can carrying…

Abstract

Purpose

This study aims to make the mobile robot better adapt to the patrol and monitoring in industrial field substation area, a multi-mode mobile carrying mechanism which can carrying data collector, camera and other equipment is designed.

Design/methodology/approach

Based on the geometric axis analysis and interference analysis, the multi-mode mobile carrying mechanism is designed. The screw constraint topological theory and zero-moment point (ZMP) theory is used to kinematic analysis in mechanism mobile process.

Findings

The mobile carrying mechanism can realize the folding movement, hexagonal rolling and quadrilateral rolling movement. A series of simulation and prototype experiment results verify the feasibility and actual error of the design analysis.

Originality/value

The work of this paper provides a mobile carrying mechanism for carrying different data acquisition equipment and surveillance camera in industrial field substation zone. It has excellent folding performance and mobile capabilities. The mobile carrying mechanism reduces the workload of human being and injuries suffered by workers in industrial substation area.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 August 2014

Patrick Aubin, Kelsey Petersen, Hani Sallum, Conor Walsh, Annette Correia and Leia Stirling

Pediatric disorders, such as cerebral palsy and stroke, can result in thumb-in-palm deformity greatly limiting hand function. This not only limits children's ability to perform…

2000

Abstract

Purpose

Pediatric disorders, such as cerebral palsy and stroke, can result in thumb-in-palm deformity greatly limiting hand function. This not only limits children's ability to perform activities of daily living but also limits important motor skill development. Specifically, the isolated orthosis for thumb actuation (IOTA) is 2 degrees of freedom (DOF) thumb exoskeleton that can actuate the carpometacarpal (CMC) and metacarpophalangeal (MCP) joints through ranges of motion required for activities of daily living. The paper aims to discuss these issues.

Design/methodology/approach

IOTA consists of a lightweight hand-mounted mechanism that can be secured and aligned to individual wearers. The mechanism is actuated via flexible cables that connect to a portable control box. Embedded encoders and bend sensors monitor the 2 DOF of the thumb and flexion/extension of the wrist. A linear force characterization was performed to test the mechanical efficiency of the cable-drive transmission and the output torque at the exoskeletal CMC and MCP joints was measured.

Findings

Using this platform, a number of control modes can be implemented that will enable the device to be controlled by a patient to assist with opposition grasp and fine motor control. Linear force and torque studies showed a maximum efficiency of 44 percent, resulting in a torque of 2.39±1.06 in.-lbf and 0.69±0.31 in.-lbf at the CMC and MCP joints, respectively.

Practical implications

The authors envision this at-home device augmenting the current in-clinic and at-home therapy, enabling telerehabilitation protocols.

Originality/value

This paper presents the design and characterization of a novel device specifically designed for pediatric grasp telerehabilitation to facilitate improved functionality and somatosensory learning.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 9000