Search results

1 – 10 of 160
Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Open Access
Article
Publication date: 29 July 2020

T. Mahalingam and M. Subramoniam

Surveillance is the emerging concept in the current technology, as it plays a vital role in monitoring keen activities at the nooks and corner of the world. Among which moving…

2120

Abstract

Surveillance is the emerging concept in the current technology, as it plays a vital role in monitoring keen activities at the nooks and corner of the world. Among which moving object identifying and tracking by means of computer vision techniques is the major part in surveillance. If we consider moving object detection in video analysis is the initial step among the various computer applications. The main drawbacks of the existing object tracking method is a time-consuming approach if the video contains a high volume of information. There arise certain issues in choosing the optimum tracking technique for this huge volume of data. Further, the situation becomes worse when the tracked object varies orientation over time and also it is difficult to predict multiple objects at the same time. In order to overcome these issues here, we have intended to propose an effective method for object detection and movement tracking. In this paper, we proposed robust video object detection and tracking technique. The proposed technique is divided into three phases namely detection phase, tracking phase and evaluation phase in which detection phase contains Foreground segmentation and Noise reduction. Mixture of Adaptive Gaussian (MoAG) model is proposed to achieve the efficient foreground segmentation. In addition to it the fuzzy morphological filter model is implemented for removing the noise present in the foreground segmented frames. Moving object tracking is achieved by the blob detection which comes under tracking phase. Finally, the evaluation phase has feature extraction and classification. Texture based and quality based features are extracted from the processed frames which is given for classification. For classification we are using J48 ie, decision tree based classifier. The performance of the proposed technique is analyzed with existing techniques k-NN and MLP in terms of precision, recall, f-measure and ROC.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 18 October 2018

Yang Guan, Shengbo Eben Li, Jingliang Duan, Wenjun Wang and Bo Cheng

Decision-making is one of the key technologies for self-driving cars. The high dependency of previously existing methods on human driving data or rules makes it difficult to model…

6447

Abstract

Purpose

Decision-making is one of the key technologies for self-driving cars. The high dependency of previously existing methods on human driving data or rules makes it difficult to model policies for different driving situations.

Design/methodology/approach

In this research, a probabilistic decision-making method based on the Markov decision process (MDP) is proposed to deduce the optimal maneuver automatically in a two-lane highway scenario without using any human data. The decision-making issues in a traffic environment are formulated as the MDP by defining basic elements including states, actions and basic models. Transition and reward models are defined by using a complete prediction model of the surrounding cars. An optimal policy was deduced using a dynamic programing method and evaluated under a two-dimensional simulation environment.

Findings

Results show that, at the given scenario, the self-driving car maintained safety and efficiency with the proposed policy.

Originality/value

This paper presents a framework used to derive a driving policy for self-driving cars without relying on any human driving data or rules modeled by hand.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 2 January 2018

Jianfeng Zhao, Bodong Liang and Qiuxia Chen

The successful and commercial use of self-driving/driverless/unmanned/automated car will make human life easier. The paper aims to discuss this issue.

67706

Abstract

Purpose

The successful and commercial use of self-driving/driverless/unmanned/automated car will make human life easier. The paper aims to discuss this issue.

Design/methodology/approach

This paper reviews the key technology of a self-driving car. In this paper, the four key technologies in self-driving car, namely, car navigation system, path planning, environment perception and car control, are addressed and surveyed. The main research institutions and groups in different countries are summarized. Finally, the debates of self-driving car are discussed and the development trend of self-driving car is predicted.

Findings

This paper analyzes the key technology of self-driving car and illuminates the state-of-art of the self-driving car.

Originality/value

The main research contents and key technology have been introduced. The research progress as well as the research institution has been summarized.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 5 June 2020

Zijun Jiang, Zhigang Xu, Yunchao Li, Haigen Min and Jingmei Zhou

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road…

1042

Abstract

Purpose

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.

Design/methodology/approach

This study included three steps, Step 1, extraction of feature points. After getting the image, the local features in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of feature points and trajectory generation.

Findings

Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.

Originality/value

The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of the lane-level positioning in some critical ITS applications.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 17 July 2020

Sheryl Brahnam, Loris Nanni, Shannon McMurtrey, Alessandra Lumini, Rick Brattin, Melinda Slack and Tonya Barrier

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex…

2284

Abstract

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 12 August 2022

Bolin Gao, Kaiyuan Zheng, Fan Zhang, Ruiqi Su, Junying Zhang and Yimin Wu

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental…

Abstract

Purpose

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental perception. Existing research works on multitarget tracking based on multisensor fusion mostly focuses on the vehicle perspective, but limited by the principal defects of the vehicle sensor platform, it is difficult to comprehensively and accurately describe the surrounding environment information.

Design/methodology/approach

In this paper, a multitarget tracking method based on roadside multisensor fusion is proposed, including a multisensor fusion method based on measurement noise adaptive Kalman filtering, a global nearest neighbor data association method based on adaptive tracking gate, and a Track life cycle management method based on M/N logic rules.

Findings

Compared with fixed-size tracking gates, the adaptive tracking gates proposed in this paper can comprehensively improve the data association performance in the multitarget tracking process. Compared with single sensor measurement, the proposed method improves the position estimation accuracy by 13.5% and the velocity estimation accuracy by 22.2%. Compared with the control method, the proposed method improves the position estimation accuracy by 23.8% and the velocity estimation accuracy by 8.9%.

Originality/value

A multisensor fusion method with adaptive Kalman filtering of measurement noise is proposed to realize the adaptive adjustment of measurement noise. A global nearest neighbor data association method based on adaptive tracking gate is proposed to realize the adaptive adjustment of the tracking gate.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and…

1310

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1146

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 7 October 2021

Vadym Mozgovoy

The authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use…

Abstract

Purpose

The authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use physiological and non-physiological bio-sensor data.

Design/methodology/approach

The authors propose a conceptual framework for longitudinal estimation of stress-related states consisting of four blocks: (1) identification; (2) validation; (3) measurement and (4) visualization. The authors implement each step of the proposed conceptual framework, using the example of Gaussian mixture model (GMM) and K-means algorithm. These ML algorithms are trained on the data of 18 workers from the public administration sector who wore biometric devices for about two months.

Findings

The authors confirm the convergent validity of a proposed conceptual framework IW. Empirical data analysis suggests that two-cluster models achieve five-fold cross-validation accuracy exceeding 70% in identifying stress. Coefficient of accuracy decreases for three-cluster models achieving around 45%. The authors conclude that identification models may serve to derive longitudinal stress-related measures.

Research limitations/implications

Proposed conceptual framework may guide researchers in creating validated stress-related indicators. At the same time, physiological sensing of stress through identification models is limited because of subject-specific reactions to stressors.

Practical implications

Longitudinal indicators on stress allow estimation of long-term impact coming from external environment on stress-related states. Such stress-related indicators can become an integral part of mobile/web/computer applications supporting stress management programs.

Social implications

Timely identification of excessive stress may improve individual well-being and prevent development stress-related diseases.

Originality/value

The study develops a novel conceptual framework for longitudinal estimation of stress-related states using physiological and non-physiological bio-sensor data, given that scientific knowledge on validated longitudinal indicators of stress is in emergent state.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 160