Search results

1 – 10 of over 1000
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 February 2021

Jian Tian, Jiangan Xie, Zhonghua He, Qianfeng Ma and Xiuxin Wang

Wrist-cuff oscillometric blood pressure monitors are very popular in the portable medical device market. However, its accuracy has always been controversial. In addition to the…

Abstract

Purpose

Wrist-cuff oscillometric blood pressure monitors are very popular in the portable medical device market. However, its accuracy has always been controversial. In addition to the oscillatory pressure pulse wave, the finger photoplethysmography (PPG) can provide information on blood pressure changes. A blood pressure measurement system integrating the information of pressure pulse wave and the finger PPG may improve measurement accuracy. Additionally, a neural network can synthesize the information of different types of signals and approximate the complex nonlinear relationship between inputs and outputs. The purpose of this study is to verify the hypothesis that a wrist-cuff device using a neural network for blood pressure estimation from both the oscillatory pressure pulse wave and PPG signal may improve the accuracy.

Design/methodology/approach

A PPG sensor was integrated into a wrist blood pressure monitor, so the finger PPG and the oscillatory pressure wave could be detected at the same time during the measurement. After the peak detection, curves were fitted to the data of pressure pulse amplitude and PPG pulse amplitude versus time. A genetic algorithm-back propagation neural network was constructed. Parameters of the curves were inputted into the neural network, the outputs of which were the measurement values of blood pressure. Blood pressure measurements of 145 subjects were obtained using a mercury sphygmomanometer, the developed device with the neural network algorithm and an Omron HEM-6111 blood pressure monitor for comparison.

Findings

For the systolic blood pressure (SBP), the difference between the proposed device and the mercury sphygmomanometer is 0.0062 ± 2.55 mmHg (mean ± SD) and the difference between the Omron device and the mercury sphygmomanometer is 1.13 ± 9.48 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and the proposed device was 0.28 ± 2.99 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and Omron HEM-6111 was −3.37 ± 7.53 mmHg.

Originality/value

Although the difference in the SBP error between the proposed device and Omron HEM-6111 was not remarkable, there was a significant difference between the proposed device and Omron HEM-6111 in the diastolic blood pressure error. The developed device showed an improved performance. This study was an attempt to enhance the accuracy of wrist-cuff oscillometric blood pressure monitors by using the finger PPG and the neural network. The hardware framework constructed in this study can improve the conventional wrist oscillometric sphygmomanometer and may be used for continuous measurement of blood pressure.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 February 2018

Murat Perit Çakir, Tuna Çakar, Yener Girisken and Dicle Yurdakul

This study aims to explore the plausibility of the functional near-infrared spectroscopy (fNIRS) methodology for neuromarketing applications and develop a…

2063

Abstract

Purpose

This study aims to explore the plausibility of the functional near-infrared spectroscopy (fNIRS) methodology for neuromarketing applications and develop a neurophysiologically-informed model of purchasing behavior based on fNIRS measurements.

Design/methodology/approach

The oxygenation signals extracted from the purchase trials of each subject were temporally averaged to obtain average signals for buy and pass decisions. The obtained data were analyzed via both linear mixed models for each of the 16 optodes to explore their separate role in the purchasing decision process and a discriminant analysis to construct a classifier for buy/pass decisions based on oxygenation measures from multiple optodes.

Findings

Positive purchasing decisions significantly increase the neural activity through fronto-polar regions, which are closely related to OFC and vmPFC that modulate the computation of subjective values. The results showed that neural activations can be used to decode the buy or pass decisions with 85 per cent accuracy provided that sensitivity to the budget constraint is provided as an additional factor.

Research limitations/implications

The study shows that the fNIRS measures can provide useful biomarkers for improving the classification accuracy of purchasing tendencies and might be used as a main or complementary method together with traditional research methods in marketing. Future studies might focus on real-time purchasing processes in a more ecologically valid setting such as shopping in supermarkets.

Originality/value

This paper uses an emerging neuroimaging method in consumer neuroscience, namely, fNIRS. The decoding accuracy of the model is 85 per cent which presents an improvement over the accuracy levels reported in previous studies. The research also contributes to existing knowledge by providing insights in understanding individual differences and heterogeneity in consumer behavior through neural activities.

Details

European Journal of Marketing, vol. 52 no. 1/2
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 7 December 2021

Aarthy Prabakaran and Elizabeth Rufus

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and…

Abstract

Purpose

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and have them sent to their doctors for feedback. Many studies are being conducted to improve wearable health-care monitoring systems to obtain clinically relevant diagnoses. The accuracy of this system is limited by several challenges, such as motion artifacts (MA), power line interference, false detection and acquiring vitals using dry electrodes. This paper aims to focus on wearable health-care monitoring systems in the literature and provides the effect of MA on the wearable system. Also presents the problems faced while tracking the vitals of users.

Design/methodology/approach

MA is a major concern and certainly needs to be suppressed. An analysis of the causes and effects of MA on wearable monitoring systems is conducted. Also, a study from the literature on motion artifact detection and reduction is carried out and presented here. The benefits of a machine learning algorithm in a wearable monitoring system are also presented. Finally, distinct applications of the wearable monitoring system have been explored.

Findings

According to the study reduction of MA and multiple sensor data fusion increases the accuracy of wearable monitoring systems.

Originality/value

This study also presents the outlines of design modification of dry/non-contact electrodes to minimize the MA. Also, discussed few approaches to design an efficient wearable health-care monitoring system.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 31 January 2024

Deirdre Feeney

This chapter details a practice-based investigation of a 19th-century astronomical device known as ‘Janssen’s apparatus’. It questions traditional narratives of linear…

Abstract

This chapter details a practice-based investigation of a 19th-century astronomical device known as ‘Janssen’s apparatus’. It questions traditional narratives of linear technological advancement and ‘sole inventor’ to reframe the historical artefact as a site which makes visible a network of technological knowledge interconnecting astronomy and visual culture. Approached from this perspective, the Janssen artefact is reframed as an ‘intersite of knowledge’, exploring how the various know-how contained within the device is located across disciplines rather than within a single field. Originally developed to calculate the Astronomical Unit during the 1874 Transit of Venus, Janssen’s apparatus failed in its endeavour as a measuring instrument, but its motion mechanism was successfully adapted into early cinema technologies. This chapter applies praxis through the development of a prototype artwork and the concept of ‘techne’ as speculative means of understanding how this mechanism was transferred from astronomy to the Western cultural realm. It proposes that the development of the apparatus was partially gleaned from moving image techniques already in use within 19th-century visual culture. The development of the prototype artwork is discussed in relation to the specific timing mechanism of the Janssen apparatus and how it establishes its own ‘intersite of knowledge’ relevant to its contemporary context. Finally, this chapter elaborates on how witnessing the Janssen mechanism in motion provided unique insight and how creating a dialogue between historical and contemporary apparatus facilitates a reconsideration of how galleries, libraries, archives, and museums [GLAM] and other host institutions that contain artefacts might share their hidden stories.

Details

Data Curation and Information Systems Design from Australasia: Implications for Cataloguing of Vernacular Knowledge in Galleries, Libraries, Archives, and Museums
Type: Book
ISBN: 978-1-80455-615-3

Keywords

Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 April 2016

Maria Torres Vega, Vittorio Sguazzo, Decebal Constantin Mocanu and Antonio Liotta

The Video Quality Metric (VQM) is one of the most used objective methods to assess video quality, because of its high correlation with the human visual system (HVS). VQM is…

Abstract

Purpose

The Video Quality Metric (VQM) is one of the most used objective methods to assess video quality, because of its high correlation with the human visual system (HVS). VQM is, however, not viable in real-time deployments such as mobile streaming, not only due to its high computational demands but also because, as a Full Reference (FR) metric, it requires both the original video and its impaired counterpart. In contrast, No Reference (NR) objective algorithms operate directly on the impaired video and are considerably faster but loose out in accuracy. The purpose of this paper is to study how differently NR metrics perform in the presence of network impairments.

Design/methodology/approach

The authors assess eight NR metrics, alongside a lightweight FR metric, using VQM as benchmark in a self-developed network-impaired video data set. This paper covers a range of methods, a diverse set of video types and encoding conditions and a variety of network impairment test-cases.

Findings

The authors show the extent by which packet loss affects different video types, correlating the accuracy of NR metrics to the FR benchmark. This paper helps identifying the conditions under which simple metrics may be used effectively and indicates an avenue to control the quality of streaming systems.

Originality/value

Most studies in literature have focused on assessing streams that are either unaffected by the network (e.g. looking at the effects of video compression algorithms) or are affected by synthetic network impairments (i.e. via simulated network conditions). The authors show that when streams are affected by real network conditions, assessing Quality of Experience becomes even harder, as the existing metrics perform poorly.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 11 June 2019

Muhammad Yahya, Jawad Ali Shah, Kushsairy Abdul Kadir, Zulkhairi M. Yusof, Sheroz Khan and Arif Warsi

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water…

1483

Abstract

Purpose

Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water navigation systems, sea-water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion.

Design/methodology/approach

This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion.

Findings

The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of Inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems.

Originality/value

This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 December 2023

Indrit Troshani and Nick Rowbottom

Information infrastructures can enable or constrain how companies pursue their visions of sustainability reporting and help address the urgent need to understand how corporate…

Abstract

Purpose

Information infrastructures can enable or constrain how companies pursue their visions of sustainability reporting and help address the urgent need to understand how corporate activity affects sustainability outcomes and how socio-ecological challenges affect corporate activity. The paper examines the relationship between sustainability reporting information infrastructures and sustainability reporting practice.

Design/methodology/approach

The paper mobilises a socio-technical perspective and the conception of infrastructure, the socio-technical arrangement of technical artifacts and social routines, to engage with a qualitative dataset comprised of interview and documentary evidence on the development and construction of sustainability reporting information.

Findings

The results detail how sustainability reporting information infrastructures are used by companies and depict the difficulties faced in generating reliable sustainability data. The findings illustrate the challenges and measures undertaken by entities to embed automation and integration, and to enhance sustainability data quality. The findings provide insight into how infrastructures constrain and support sustainability reporting practices.

Originality/value

The paper explains how infrastructures shape sustainability reporting practices, and how infrastructures are shaped by regulatory demands and costs. Companies have developed “uneven” infrastructures supporting legislative requirements, whilst infrastructures supporting non-legislative sustainability reporting remain underdeveloped. Consequently, infrastructures supporting specific legislation have developed along unitary pathways and are often poorly integrated with infrastructures supporting other sustainability reporting areas. Infrastructures developed around legislative requirements are not necessarily constrained by financial reporting norms and do not preclude specific sustainability reporting visions. On the contrary, due to regulation, infrastructure supporting disclosures that offer an “inside out” perspective on sustainability reporting is often comparatively well developed.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 10 March 2022

Jayaram Boga and Dhilip Kumar V.

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning…

95

Abstract

Purpose

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning approach. The purpose of this study is,to solve the HAR problem under WBAN using a developed ensemble learning approach for achieving the profitable HAR method. There are three data sets used for this HAR in WBAN, namely, human activity recognition using smartphones, wireless sensor data mining and Kaggle. The proposed model undergoes four phases, namely, “pre-processing, feature extraction, feature selection and classification.” Here, the data can be preprocessed by artifacts removal and median filtering techniques. Then, the features are extracted by techniques such as “t-Distributed Stochastic Neighbor Embedding”, “Short-time Fourier transform” and statistical approaches. The weighted optimal feature selection is considered as the next step for selecting the important features based on computing the data variance of each class. This new feature selection is achieved by the hybrid coyote Jaya optimization (HCJO). Finally, the meta-heuristic-based ensemble learning approach is used as a new recognition approach with three classifiers, namely, “support vector machine (SVM), deep neural network (DNN) and fuzzy classifiers.” Experimental analysis is performed.

Design/methodology/approach

The proposed HCJO algorithm was developed for optimizing the membership function of fuzzy, iteration limit of SVM and hidden neuron count of DNN for getting superior classified outcomes and to enhance the performance of ensemble classification.

Findings

The accuracy for enhanced HAR model was pretty high in comparison to conventional models, i.e. higher than 6.66% to fuzzy, 4.34% to DNN, 4.34% to SVM, 7.86% to ensemble and 6.66% to Improved Sealion optimization algorithm-Attention Pyramid-Convolutional Neural Network-AP-CNN, respectively.

Originality/value

The suggested HAR model with WBAN using HCJO algorithm is accurate and improves the effectiveness of the recognition.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 1000