Search results

1 – 10 of 28
Article
Publication date: 9 July 2020

Mehmet Eker, Durmuş Yarımpabuç and Kerimcan Çelebi

This paper aims to present thermal and mechanical stresses in solid and hollow thick-walled cylinders and spheres made of functionally graded materials (FGMs) under the effect of…

Abstract

Purpose

This paper aims to present thermal and mechanical stresses in solid and hollow thick-walled cylinders and spheres made of functionally graded materials (FGMs) under the effect of heat generation.

Design/methodology/approach

Constant internal temperature and convective external conditions in hollow bodies along with internal heat generation with a combination of outer convective conditions in solid bodies are investigated individually. The effect of the heat convection coefficient on solid bodies is additionally discussed. The variation of the FGM properties in the radial direction is adapted to the Mori–Tanaka homogenization schemes, which produces irregular and two-point linear boundary value problems that are numerically solved by the pseudospectral Chebyshev method.

Findings

It has been shown that the selection of the mixtures of FGMs has to be made correctly to keep the thermal and mechanical loads acting on objects at low levels.

Originality/value

In this study, both solid and hollow functionally graded cylinders and spheres for different boundary conditions that are as their engineering applications are examined with the proposed method. The results have demonstrated that the pseudospectral Chebyshev method has high accuracy, low calculation costs and ease of application and can be easily adapted to such engineering problems.

Article
Publication date: 6 April 2020

Witold Ogierman

The purpose of this study is to develop a homogenization approach that ensures both high accuracy and time-efficient solution for elastic-plastic functionally graded composites.

Abstract

Purpose

The purpose of this study is to develop a homogenization approach that ensures both high accuracy and time-efficient solution for elastic-plastic functionally graded composites.

Design/methodology/approach

The paper presents a novel two-stage hybrid homogenization approach that combines advantages of the mean field homogenization and homogenization based on the finite element method (FEM). The groundbreaking nature of the developed approach is associated with division of the hybrid homogenization procedure into two stages, which allows to very efficiently determine the solution for arbitrary volume fraction of the reinforcement. This paper concerns also on modelling of composites with randomly distributed prolate and oblate particles. For this purpose, the hybrid homogenization was implemented in the framework of the discrete orientation averaging procedure involving pseudo-grain discretization method.

Findings

Agreement between the results obtained using the proposed approach and the standard FEM-based homogenization is very good (up to the volume fraction of 0.3).

Originality/value

The proposed two-stage homogenization approach allows to obtain the solution for materials with arbitrary volume fraction of the reinforcement very efficiently; therefore, it is highly beneficial for the two-scale modeling of nonlinear functionally graded materials and structures.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2021

Kamal Kishore Joshi and Vishesh Ranjan Kar

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation…

Abstract

Purpose

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation patterns and degrees of material heterogeneity. Here, deformation characteristics are obtained under different loading and support conditions.

Design/methodology/approach

The finite element solutions of multidirectional functionally graded composite panels subjected to uniform and sinusoidal transverse loads are presented under different support conditions. Here, different functionally graded composites, such as unidirectional (1D) and multidirectional (2D/3D), are considered by distributing constituent materials in one, two and three directions, respectively, using single and multivariable power-law functions. A constitutive model with fully spatial-dependent elastic stiffness is developed, whereas the kinematics of the present structure is defined using equivalent single-layer higher-order theory. The weak form, based on the principle of virtual work, is established and solved consequently using isoparametric finite element approximations via quadrilateral Lagrangian elements.

Findings

The appropriate mesh-refinement process is carried out to achieve the mesh convergence; whereas, the correctness of proposed heterogeneous model is confirmed through a verification test. The comprehensive numerical assessment of multidirectional functionally graded panels under various loading and support conditions depicts the importance of degree of material heterogeneity with different gradation patterns and volume-fraction exponents.

Originality/value

A comprehensive analysis on the deformation behaviour of 1D-functionally graded materials (FGMs) (X-FGM, Y-FGM and Z-FGM), 2D-FGMs (XY-FGM, YZ-FGM and XZ-FGM) and 3D-FGM composite panels FGM structures is presented. Multifaceted heterogeneous FGMs are modelled by varying constituent materials in one, two and three directions, using power-law functions. The constitutive model of multi-directional FGM is developed using fully spatial-dependent elastic matrix and higher-order kinematics. Isoparametric 2D finite element formulation is adopted using quadrilateral Lagrangian elements to model 1D/2D/3D-FGM structures and to obtain their deflection responses under different loading and support conditions.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

G. Zak, M. Haberer, C.B. Park and B. Benhabib

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements has been…

5555

Abstract

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements has been recently explored in the literature. This paper proposes a novel methodology that utilizes a modified rule‐of‐mixtures model for the prediction of the mechanical properties of such layered composites. The prediction process employs empirical data on (i) the fibre‐matrix interface, (ii) the fibres’ geometrical arrangement within the specimens (i.e. fibre‐orientation distribution), and (iii) the fibre‐length distribution. The effects of the fibre‐orientation and fibre‐length distributions are accounted for in the prediction model by the fibre‐length‐correction and orientation‐efficiency factors. Comparison of extensive experimental results and model‐based predictions of mechanical properties of layered composites demonstrated the effectiveness of the proposed estimation methodology.

Details

Rapid Prototyping Journal, vol. 6 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Kulmani Mehar and Subrata Kumar Panda

The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced…

Abstract

Purpose

The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced composite doubly curved shell panel using higher-order shear deformation theory with thermal load. It is well-known that functionally graded materials are a multidimensional problem, and the present numerical model is also capable of solving the flexural behaviour of different shell panel made up of carbon nanotube-reinforced composite with adequate accuracy in the absence of experimentation.

Design/methodology/approach

In this current paper, the responses of the single-walled carbon nanotube-reinforced composite panel is computed numerically using the proposed generalised higher-order mathematical model through a homemade computer code developed in MATLAB. The desired flexural responses are computed numerically using the variational method.

Findings

The validity and the convergence behaviour of the present higher-order model indicate the necessity for the analysis of multidimensional structure under the combined loading condition. The effect of various design parameters on the flexural behaviour of functionally graded carbon nanotube doubly curved shell panel are examined to highlight the applicability of the presently proposed higher-order model under thermal environment.

Originality/value

In this paper, for the first time, the static behaviour of functionally graded carbon nanotube-reinforced composite doubly curved shell panel is analysed using higher-order shear deformation theory. The properties of carbon nanotube and the matrix material are considered to be temperature dependent. The present model is so general that it is capable of solving various geometries from single curve to doubly curved panel, including the flat panel.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 March 2013

Ahmed M. Hussein and Youssef F. Rashed

This paper computationally estimates the constitutive relationships of composite materials reinforced by single walled carbon nanotubes (SWNT).

Abstract

Purpose

This paper computationally estimates the constitutive relationships of composite materials reinforced by single walled carbon nanotubes (SWNT).

Design/methodology/approach

A multiscale analysis is considered. At the nanoscale level, molecular dynamics (MD) are used to predict the stiffness for an equivalent beam. A BEM solver for the elasticity problems is extended to allow the presence of inclusions and hence is used to model a RVE for the composite matrix with the equivalent nanotube beams. A genetic algorithm (GA) is developed to generate an initial population of anisotropic materials based on FEM. The GA evolves the population of properties of anisotropic materials till a material is found whose mechanical response is the same as that of the nanocomposite.

Findings

The overall process is suitable for the constitutive relationships estimation according to the verification process outlined.

Research limitations/implications

The present work is limited to 2D linear problems. However, extending it to 3D non‐linear applications is straight forward.

Practical implications

The present technique could be used to estimate properties of NCT composites, hence practical applications such as aeroplane structures or turbine blades could be analysed using commercial finite element software. The present methodology could be used to estimate non‐mechanical properties such as the thermal and electric properties.

Originality/value

The present computational technique has never been presented in the literature.

Details

Engineering Computations, vol. 30 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 November 2019

Royal Madan, Kashinath Saha and Shubhankar Bhowmick

The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish…

Abstract

Purpose

The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish the limit elastic speeds for S-FG disks and report the stresses induced at such speeds.

Design/methodology/approach

For S-FGM disk, effective Young’s modulus is calculated using modified rule of mixture and subsequently effective yield stress is also calculated by taking into consideration of stress-strain transfer ratio. The S-FGM disk is subject to centrifugal loading and the stress and deformation characteristics are investigated using variational principle wherein the solution is obtained by Galerkin’s error minimization principle. Based on von-Mises yield criteria, equivalent stress is calculated at different angular speeds till the equivalent stress at any given location in the disk attains the value of effective yield stress at the given location (location of yield initiation). This defines the limit elastic speed for the S-FGM disk (for given n).

Findings

The limit elastic speed of S-FGM disks for a range of grading index (n) and corresponding stresses within the disk are reported. Results are reported for uniform disks of different aspect ratio and the results reported could be used as practical design data.

Practical implications

Functional grading of material in structures opens a new horizon to explore the possibility of manufacturing high strength component at low weight. Material grading plays a significant role in achieving desired material properties, and literature review reveals reporting of numerous grading functions to approximate material distribution in structure.

Originality/value

The work has not been addressed earlier and findings provide a pioneering insight into the performance of S-FG disks.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 2006

Shutian Liu and Yongcun Zhang

In this paper, a homogenization‐based multi‐scale method for predicting the effective thermal conductivity of porous materials with radiation is presented, which considers the…

Abstract

In this paper, a homogenization‐based multi‐scale method for predicting the effective thermal conductivity of porous materials with radiation is presented, which considers the effect of geometry and distribution of pores. Using homogenization method to solve the pure conductive problem of porous materials with periodic structure, the effective thermal conductivity without considering radiation is predicted, and a temperature field in a local domain of a unit cell is obtained. This temperature field is taken as the good approximation of the real temperature distribution, and the radiative thermal conductivity is obtained. The effect of the microstructure, the distribution and geometry of pores on heat transfer of porous materials is discussed. It is concluded that the dimension of the pores is an important influence factor on the thermal transfer property of porous materials if radiation is considered. Increasing the pore’s dimension enhances the contribution of radiation to the heat transfer property of porous materials. For porous materials with cylindrical and spherical pores, the radiative thermal conductivity is proportional to pore’s diameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 December 2023

Sanjay Kumar Singh, Lakshman Sondhi, Rakesh Kumar Sahu and Royal Madan

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal…

Abstract

Purpose

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal pressure, temperature with variable heat generation) and their combinations.

Design/methodology/approach

The classical method of solution, Navier's equation, is used to solve the governing equation. The analysis considers thermal and mechanical boundary conditions and takes into account the variation of material properties according to a power law function of the radius of the disk and grading parameter.

Findings

The findings of the study reveal distinct trends and behaviors based on different grading parameters. The influence of gravity is found to be negligible, resulting in similar patterns to the pure rotation case. Variable heat generation introduces non-linear temperature profiles and higher displacements, with stress values influenced by grading parameters.

Practical implications

The study provides valuable insights into the behavior of displacement and stresses in hollow disks, offering a deeper understanding of their mechanical response under varying conditions. These insights can be useful in the design and analysis of functionally graded hollow disks in various engineering applications.

Originality/value

The originality and value of this study lies in the consideration of various loading combinations of rotation, gravity, internal pressure and temperature with variable heat generation. Furthermore, the study of effect of various angular rotations, temperatures and pressures expands the understanding of the mechanical behavior of such structures, contributing to the existing body of knowledge in the field.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 October 2023

Mohammad Hadi Moradi and Mehdi Ranjbar-Roeintan

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing…

Abstract

Purpose

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing piezoelectric layers.

Design/methodology/approach

A unit cell shall be taken into account for the simulation of BNNT's volume fraction. A rectangular micromechanical model is used to obtain the mechanical properties of unit cell of piezoelectric fiber-reinforced composite (PFRC). The three-dimensional (3D) elasticity method is presented to provide the relationship between displacements and stresses. The one-dimensional differential quadrature method (1D-DQM) and the state-space methodology are combined to create the semi-analytical technique. The state-space approach is utilized to implement an analytical resolution in the thickness direction, and 1D-DQM is used to implement an approximation solution in the radial direction. The composite consists of a polyvinylidene fluoride (PVDF) matrix and BNNTs as reinforcement.

Findings

A study on the PFRC is carried, likewise, the coefficients of its properties are obtained using a micro-electromechanical model known as the rectangular model. To implement the DQM, the plate was radially divided into sample points, each with eight state variables. The boundary situation and DQM are used to discretize the state-space equations, and the top and bottom application surface conditions are used to determine the natural frequencies of the plate. The model's convergence is assessed. Additionally, the dimensionless frequency is compared to earlier works and ABAQUS simulation in order to validate the model. Finally, the effects of the thickness, lateral wavenumber, boundary conditions and BNNT volume fraction on the annular plate's free vibration are investigated. The important achievements are that increasing the volume fraction of BNNTs increases the natural frequency.

Originality/value

The micromechanical “XY rectangle” model in PFRC along with the three-dimensional elasticity model is used in this literature to assess how the piezoelectric capabilities of BNNTs affect the free vibration of polymer-based composite annular plates under various boundary conditions.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 28