Search results

1 – 10 of 422
Article
Publication date: 23 March 2012

Boris Mitavskiy, Jonathan Rowe and Chris Cannings

The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will…

Abstract

Purpose

The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel MonteCarlo sampling algorithms that provably increase the AI potential.

Design/methodology/approach

In the current paper the authors set up a mathematical framework, state and prove a version of a Geiringer‐like theorem that is very well‐suited for the development of Mote‐Carlo sampling algorithms to cope with randomness and incomplete information to make decisions.

Findings

This work establishes an important theoretical link between classical population genetics, evolutionary computation theory and model free reinforcement learning methodology. Not only may the theory explain the success of the currently existing MonteCarlo tree sampling methodology, but it also leads to the development of novel MonteCarlo sampling techniques guided by rigorous mathematical foundation.

Practical implications

The theoretical foundations established in the current work provide guidance for the design of powerful MonteCarlo sampling algorithms in model free reinforcement learning, to tackle numerous problems in computational intelligence.

Originality/value

Establishing a Geiringer‐like theorem with non‐homologous recombination was a long‐standing open problem in evolutionary computation theory. Apart from overcoming this challenge, in a mathematically elegant fashion and establishing a rather general and powerful version of the theorem, this work leads directly to the development of novel provably powerful algorithms for decision making in the environment involving randomness, hidden or incomplete information.

Article
Publication date: 13 August 2021

Manju V.M. and Ganesh R.S.

Multiple-input multiple-output (MIMO) combined with multi-user massive MIMO has been a well-known approach for high spectral efficiency in wideband systems, and it was targeted to…

Abstract

Purpose

Multiple-input multiple-output (MIMO) combined with multi-user massive MIMO has been a well-known approach for high spectral efficiency in wideband systems, and it was targeted to detect the MIMO signals. The increasing data rates with multiple antennas and multiple users that share the communication channel simultaneously lead to higher capacity requirements and increased complexity. Thus, different detection algorithms were developed for the Massive MIMO.

Design/methodology/approach

This paper focuses on the various literature analyzes on various detection algorithms and techniques for MIMO detectors. Here, it reviews several research papers and exhibits the significance of each detection method.

Findings

This paper provides the details of the performance analysis of the MIMO detectors and reveals the best value in the case of each performance measure. Finally, it widens the research issues that can be useful for future researchers to be accomplished in MIMO massive detectors

Originality/value

This paper has presented a detailed review of the detection of massive MIMO on different algorithms and techniques. The survey mainly focuses on different types of channels used in MIMO detections, the number of antennas used in transmitting signals from the source to destination, and vice-versa. The performance measures and the best performance of each of the detectors are described.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Abstract

Details

Marketing in Customer Technology Environments
Type: Book
ISBN: 978-1-83909-601-3

Article
Publication date: 1 October 2021

Amir Hossein Hosseinian and Vahid Baradaran

The purpose of this research is to study the Multi-Skill Resource-Constrained Multi-Project Scheduling Problem (MSRCMPSP), where (1) durations of activities depend on the…

Abstract

Purpose

The purpose of this research is to study the Multi-Skill Resource-Constrained Multi-Project Scheduling Problem (MSRCMPSP), where (1) durations of activities depend on the familiarity levels of assigned workers, (2) more efficient workers demand higher per-day salaries, (3) projects have different due dates and (4) the budget of each period varies over time. The proposed model is bi-objective, and its objectives are minimization of completion times and costs of all projects, simultaneously.

Design/methodology/approach

This paper proposes a two-phase approach based on the Statistical Process Control (SPC) to solve this problem. This approach aims to develop a control chart so as to monitor the performance of an optimizer during the optimization process. In the first phase, a multi-objective statistical model has been used to obtain control limits of this chart. To solve this model, a Multi-Objective Greedy Randomized Adaptive Search Procedure (MOGRASP) has been hired. In the second phase, the MSRCMPSP is solved via a New Version of the Multi-Objective Variable Neighborhood Search Algorithm (NV-MOVNS). In each iteration, the developed control chart monitors the performance of the NV-MOVNS to obtain proper solutions. When the control chart warns about an out-of control state, a new procedure based on the Conway’s Game of Life, which is a cellular automaton, is used to bring the algorithm back to the in-control state.

Findings

The proposed two-phase approach has been used in solving several standard test problems available in the literature. The results are compared with the outputs of some other methods to assess the efficiency of this approach. Comparisons imply the high efficiency of the proposed approach in solving test problems with different sizes.

Practical implications

The proposed model and approach have been used to schedule multiple projects of a construction company in Iran. The outputs show that both the model and the NV-MOVNS can be used in real-world multi-project scheduling problems.

Originality/value

Due to the numerous numbers of studies reviewed in this research, the authors discovered that there are few researches on the multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with the aforementioned characteristics. Moreover, none of the previous researches proposed an SPC-based solution approach for meta-heuristics in order to solve the MSRCMPSP.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 August 2021

Nitin Tejram Deotale

To enhance the performance transmit antenna selection (TAS) of spatial modulation (SM), systems technique needs to be essential. This TAS is an effective technique for reducing…

Abstract

Purpose

To enhance the performance transmit antenna selection (TAS) of spatial modulation (SM), systems technique needs to be essential. This TAS is an effective technique for reducing the multiple input multiple output (MIMO) systems computational difficulty, and bit error rate (BER) can increase remarkably by various TAS algorithms. But these selection methods cannot provide code gain, so it is essential to join the TAS with external code to obtain cy -ode gain advantages in BER.

Design/methodology/approach

In this paper, Bose–Chaudhuri–Hocquenghem (BCH)-Turbo code TC is combined with the orthogonal space time block code system.

Findings

In some existing work, the improved BER has been perceived by joining forward error correction code and space time block code (STBC) for MIMO systems provided greater code gain. The proposed work can provide increasing code gain and the effective advantages of the TAS-OSTBC system.

Originality/value

To perform the system analysis, Rayleigh channel is used. In the case with multiple TAS-OSTBC systems, better performance can provide by this new joint of the BCH-Turbo compared to the conventional Turbo code for the Rayleigh fading.

Open Access
Article
Publication date: 18 July 2022

Youakim Badr

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input…

1272

Abstract

Purpose

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input features, considering scarce resources and constrains) that cannot be solved by classical machine learning. The authors include a comparative study to build intrusion detection based on statistical machine learning and representational learning, using knowledge discovery in databases (KDD) Cup99 and Installation Support Center of Expertise (ISCX) 2012.

Design/methodology/approach

The methodology applies a data analytics approach, consisting of data exploration and machine learning model training and evaluation. To build a network-based intrusion detection system, the authors apply dueling double deep Q-networks architecture enabled with costly features, k-nearest neighbors (K-NN), support-vector machines (SVM) and convolution neural networks (CNN).

Findings

Machine learning-based intrusion detection are trained on historical datasets which lead to model drift and lack of generalization whereas RL is trained with data collected through interactions. RL is bound to learn from its interactions with a stochastic environment in the absence of a training dataset whereas supervised learning simply learns from collected data and require less computational resources.

Research limitations/implications

All machine learning models have achieved high accuracy values and performance. One potential reason is that both datasets are simulated, and not realistic. It was not clear whether a validation was ever performed to show that data were collected from real network traffics.

Practical implications

The study provides guidelines to implement IDS with classical supervised learning, deep learning and RL.

Originality/value

The research applied the dueling double deep Q-networks architecture enabled with costly features to build network-based intrusion detection from network traffics. This research presents a comparative study of reinforcement-based instruction detection with counterparts built with statistical and representational machine learning.

Article
Publication date: 8 February 2018

Dong Han, Hong Nie, Jinbao Chen, Meng Chen, Zhen Deng and Jianwei Zhang

This paper aims to improve the diversity and richness of haptic perception by recognizing multi-modal haptic images.

488

Abstract

Purpose

This paper aims to improve the diversity and richness of haptic perception by recognizing multi-modal haptic images.

Design/methodology/approach

First, the multi-modal haptic data collected by BioTac sensors from different objects are pre-processed, and then combined into haptic images. Second, a multi-class and multi-label deep learning model is designed, which can simultaneously learn four haptic features (hardness, thermal conductivity, roughness and texture) from the haptic images, and recognize objects based on these features. The haptic images with different dimensions and modalities are provided for testing the recognition performance of this model.

Findings

The results imply that multi-modal data fusion has a better performance than single-modal data on tactile understanding, and the haptic images with larger dimension are conducive to more accurate haptic measurement.

Practical implications

The proposed method has important potential application in unknown environment perception, dexterous grasping manipulation and other intelligent robotics domains.

Originality/value

This paper proposes a new deep learning model for extracting multiple haptic features and recognizing objects from multi-modal haptic images.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 March 2024

Rong Jiang, Bin He, Zhipeng Wang, Xu Cheng, Hongrui Sang and Yanmin Zhou

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show…

Abstract

Purpose

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show more promising potential to cope with the challenges brought by increasingly complex tasks and environments, which have become the hot research topic in the field of robot skill learning. However, the contradiction between the difficulty of collecting robot–environment interaction data and the low data efficiency causes all these methods to face a serious data dilemma, which has become one of the key issues restricting their development. Therefore, this paper aims to comprehensively sort out and analyze the cause and solutions for the data dilemma in robot skill learning.

Design/methodology/approach

First, this review analyzes the causes of the data dilemma based on the classification and comparison of data-driven methods for robot skill learning; Then, the existing methods used to solve the data dilemma are introduced in detail. Finally, this review discusses the remaining open challenges and promising research topics for solving the data dilemma in the future.

Findings

This review shows that simulation–reality combination, state representation learning and knowledge sharing are crucial for overcoming the data dilemma of robot skill learning.

Originality/value

To the best of the authors’ knowledge, there are no surveys that systematically and comprehensively sort out and analyze the data dilemma in robot skill learning in the existing literature. It is hoped that this review can be helpful to better address the data dilemma in robot skill learning in the future.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Content available
Article
Publication date: 7 December 2021

John T. Hanley

The purpose of this paper is to illustrate how game theoretic solution concepts inform what classes of problems will be amenable to artificial intelligence and machine learning…

2987

Abstract

Purpose

The purpose of this paper is to illustrate how game theoretic solution concepts inform what classes of problems will be amenable to artificial intelligence and machine learning (AI/ML), and how to evolve the interaction between human and artificial intelligence.

Design/methodology/approach

The approach addresses the development of operational gaming to support planning and decision making. It then provides a succinct summary of game theory for those designing and using games, with an emphasis on information conditions and solution concepts. It addresses how experimentation demonstrates where human decisions differ from game theoretic solution concepts and how games have been used to develop AI/ML. It concludes by suggesting what classes of problems will be amenable to AI/ML, and which will not. It goes on to propose a method for evolving human/artificial intelligence.

Findings

Game theoretic solution concepts inform classes of problems where AI/ML 'solutions' will be suspect. The complexity of the subject requires a campaign of learning.

Originality/value

Though games have been essential to the development of AI/ML, practitioners have yet to employ game theory to understand its limitations.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 12 June 2017

Lizhen Cui, Xudong Zhao, Lei Liu, Han Yu and Yuan Miao

Allocation of complex crowdsourcing tasks, which typically include heterogeneous attributes such as value, difficulty, skill required, effort required and deadline, is still a…

2059

Abstract

Purpose

Allocation of complex crowdsourcing tasks, which typically include heterogeneous attributes such as value, difficulty, skill required, effort required and deadline, is still a challenging open problem. In recent years, agent-based crowdsourcing approaches focusing on recommendations or incentives have emerged to dynamically match workers with diverse characteristics to tasks to achieve high collective productivity. However, existing approaches are mostly designed based on expert knowledge grounded in well-established theoretical frameworks. They often fail to leverage on user-generated data to capture the complex interaction of crowdsourcing participants’ behaviours. This paper aims to address this challenge.

Design/methodology/approach

The paper proposes a policy network plus reputation network (PNRN) approach which combines supervised learning and reinforcement learning to imitate human task allocation strategies which beat artificial intelligence strategies in this large-scale empirical study. The proposed approach incorporates a policy network for the selection of task allocation strategies and a reputation network for calculating the trends of worker reputation fluctuations. Then, by iteratively applying the policy network and reputation network, a multi-round allocation strategy is proposed.

Findings

PNRN has been trained and evaluated using a large-scale real human task allocation strategy data set derived from the Agile Manager game with close to 500,000 decision records from 1,144 players in over 9,000 game sessions. Extensive experiments demonstrate the validity and efficiency of computational complex crowdsourcing task allocation strategy learned from human participants.

Originality/value

The paper can give a better task allocation strategy in the crowdsourcing systems.

Details

International Journal of Crowd Science, vol. 1 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

1 – 10 of 422