Search results

11 – 20 of over 5000
Book part
Publication date: 19 December 2012

Lee C. Adkins and Mary N. Gade

Monte Carlo simulations are a very powerful way to demonstrate the basic sampling properties of various statistics in econometrics. The commercial software package Stata makes…

Abstract

Monte Carlo simulations are a very powerful way to demonstrate the basic sampling properties of various statistics in econometrics. The commercial software package Stata makes these methods accessible to a wide audience of students and practitioners. The purpose of this chapter is to present a self-contained primer for conducting Monte Carlo exercises as part of an introductory econometrics course. More experienced econometricians that are new to Stata may find this useful as well. Many examples are given that can be used as templates for various exercises. Examples include linear regression, confidence intervals, the size and power of t-tests, lagged dependent variable models, heteroskedastic and autocorrelated regression models, instrumental variables estimators, binary choice, censored regression, and nonlinear regression models. Stata do-files for all examples are available from the authors' website http://learneconometrics.com/pdf/MCstata/.

Details

30th Anniversary Edition
Type: Book
ISBN: 978-1-78190-309-4

Keywords

Article
Publication date: 5 July 2013

Charles‐Olivier Amédée‐Manesme, Fabrice Barthélémy, Michel Baroni and Etienne Dupuy

This paper aims to show that the accuracy of real estate portfolio valuations and of real estate risk management can be improved through the simultaneous use of Monte Carlo

1331

Abstract

Purpose

This paper aims to show that the accuracy of real estate portfolio valuations and of real estate risk management can be improved through the simultaneous use of Monte Carlo simulations and options theory.

Design/methodology/approach

The authors' method considers the options embedded in Continental European lease contracts drawn up with tenants who may move before the end of the contract. The authors combine Monte Carlo simulations for both market prices and rental values with an optional model that takes into account a rational tenant's behaviour. They analyze how the options significantly affect the owner's income.

Findings

The authors' main findings are that simulated cash flows which take account of such options are more reliable that those usually computed by the traditional method of discounted cash flow.

Research limitations/implications

Some limitations are inherent to the authors' model: these include the assumption of the rationality of tenant's decisions and the difficulty of calibrating the model given the lack of data in many markets.

Originality/value

The main contribution of the paper is both by accounting for market risk (Monte Carlo simulations for the prices and market rental values) and for accounting for the idiosyncratic risk (the leasing risk).

Details

Journal of Property Investment & Finance, vol. 31 no. 4
Type: Research Article
ISSN: 1463-578X

Keywords

Abstract

This article surveys recent developments in the evaluation of point and density forecasts in the context of forecasts made by vector autoregressions. Specific emphasis is placed on highlighting those parts of the existing literature that are applicable to direct multistep forecasts and those parts that are applicable to iterated multistep forecasts. This literature includes advancements in the evaluation of forecasts in population (based on true, unknown model coefficients) and the evaluation of forecasts in the finite sample (based on estimated model coefficients). The article then examines in Monte Carlo experiments the finite-sample properties of some tests of equal forecast accuracy, focusing on the comparison of VAR forecasts to AR forecasts. These experiments show the tests to behave as should be expected given the theory. For example, using critical values obtained by bootstrap methods, tests of equal accuracy in population have empirical size about equal to nominal size.

Details

VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims
Type: Book
ISBN: 978-1-78190-752-8

Keywords

Content available
Article
Publication date: 18 May 2023

Adam Biggs, Greg Huffman, Joseph Hamilton, Ken Javes, Jacob Brookfield, Anthony Viggiani, John Costa and Rachel R. Markwald

Marksmanship data is a staple of military and law enforcement evaluations. This ubiquitous nature creates a critical need to use all relevant information and to convey outcomes in…

Abstract

Purpose

Marksmanship data is a staple of military and law enforcement evaluations. This ubiquitous nature creates a critical need to use all relevant information and to convey outcomes in a meaningful way for the end users. The purpose of this study is to demonstrate how simple simulation techniques can improve interpretations of marksmanship data.

Design/methodology/approach

This study uses three simulations to demonstrate the advantages of small arms combat modeling, including (1) the benefits of incorporating a Markov Chain into Monte Carlo shooting simulations; (2) how small arms combat modeling is superior to point-based evaluations; and (3) why continuous-time chains better capture performance than discrete-time chains.

Findings

The proposed method reduces ambiguity in low-accuracy scenarios while also incorporating a more holistic view of performance as outcomes simultaneously incorporate speed and accuracy rather than holding one constant.

Practical implications

This process determines the probability of winning an engagement against a given opponent while circumventing arbitrary discussions of speed and accuracy trade-offs. Someone wins 70% of combat engagements against a given opponent rather than scoring 15 more points. Moreover, risk exposure is quantified by determining the likely casualties suffered to achieve victory. This combination makes the practical consequences of human performance differences tangible to the end users. Taken together, this approach advances the operations research analyses of squad-level combat engagements.

Originality/value

For more than a century, marksmanship evaluations have used point-based systems to classify shooters. However, these scoring methods were developed for competitive integrity rather than lethality as points do not adequately capture combat capabilities. The proposed method thus represents a major shift in the marksmanship scoring paradigm.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Article
Publication date: 21 May 2021

Mohammad Raoufi and Aminah Robinson Fayek

This paper aims to cover the development of a methodology for hybrid fuzzy Monte Carlo agent-based simulation (FMCABS) and its implementation on a parametric study of construction…

Abstract

Purpose

This paper aims to cover the development of a methodology for hybrid fuzzy Monte Carlo agent-based simulation (FMCABS) and its implementation on a parametric study of construction crew performance.

Design/methodology/approach

The developed methodology uses fuzzy logic, Monte Carlo simulation and agent-based modeling to simulate the behavior of construction crews and predict their performance. Both random and subjective uncertainties are considered in model variables.

Findings

The developed methodology was implemented on a real case involving the parametric study of construction crew performance to assess its applicability and suitability for this context.

Research limitations/implications

This parametric study demonstrates a practical application for the hybrid FMCABS methodology. Though findings from this study are limited to the context of construction crew motivation and performance, the applicability of the developed methodology extends beyond the construction domain.

Practical implications

This paper will help construction practitioners to predict and improve crew performance by taking into account both random and subjective uncertainties.

Social implications

This paper will advance construction modeling by allowing for the assessment of social interactions among crews and their effects on crew performance.

Originality/value

The developed hybrid FMCABS methodology represents an original contribution, as it allows agent-based models to simultaneously process all types of variables (i.e. deterministic, random and subjective) in the same simulation experiment while accounting for interactions among different agents. In addition, the developed methodology is implemented in a novel and extensive parametric study of construction crew performance.

Article
Publication date: 1 April 1994

Henry Sheng, Roberto Guerrieri and Alberto Sangiovanni‐Vincentelli

We present a generalized self‐scattering method for generating carrier free flight times in Monte Carlo simulation. Compared to traditional approaches, the added flexibility of…

Abstract

We present a generalized self‐scattering method for generating carrier free flight times in Monte Carlo simulation. Compared to traditional approaches, the added flexibility of this approach results in fewer fictitious scatterings, which is especially appealing for load balance and efficiency when a SIMD parallel computer is used. Speedups from 19% to 69% over an optimized variable‐Γ approach are shown for an implementation on the Connection Machine CM‐2. The performance sensitivities to applied fields and grid spacings are also presented. The conversion of existing variable‐Γ software to this new approach requires only a few changes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 13 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 April 1993

Hamid Z. Fardi

An empirical velocity‐field relationship, based on Monte Carlo simulation, is used to modify a drift‐diffusion model for the characterization of short gate GaAs MESFET's. The…

Abstract

An empirical velocity‐field relationship, based on Monte Carlo simulation, is used to modify a drift‐diffusion model for the characterization of short gate GaAs MESFET's. The modified drift‐diffusion model is used to generate both the steady‐state and the small‐signal parameters of submicron GaAs MESFET's. The current, transconductance, and cutoff frequency are compared with two‐dimensional Monte Carlo simulation results on a 0.2 µm gate‐length. The model is also used to predict measured I‐V and s‐parameters of a 0.5 µm gate‐length ion‐implanted GaAs MESFET. The comparison and the analysis made, support the accuracy of the modified drift‐diffusion simulator and makes it computationally efficient for analysis of short‐gate devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 5 March 2018

Pengbo Wang and Jingxuan Wang

Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower…

Abstract

Purpose

Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of electric potentials in an electrostatic system efficiently with interval parameters.

Design/methodology/approach

The Taylor series expansion is proposed for evaluating the upper and lower bounds of electric potentials in an electrostatic system with interval parameters. The uncertain parameters of the electrostatic system are represented by interval notations. By performing Taylor series expansion on the electric potentials obtained using the equilibrium governing equation and by using the properties of interval mathematics, the upper and lower bounds of the electric potentials of an electrostatic system can be calculated.

Findings

To evaluate the accuracy and efficiency of the proposed method, the upper and lower bounds of the electric potentials and the computation time of the proposed method are compared with those obtained using the Monte Carlo simulation, which is referred to as a reference solution. Numerical examples illustrate that the bounds of electric potentials of this method are consistent with those obtained using the Monte Carlo simulation. Moreover, the proposed method is significantly more time-saving.

Originality/value

This paper provides a rapid computational method to estimate the upper and lower bounds of electric potentials in electrostatics analysis with interval parameters. The precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Anand Prakash and Rajendra P. Mohanty

Automakers are engaged in manufacturing both efficient and inefficient green cars. The purpose of this paper is to categorize efficient green cars and inefficient green cars…

Abstract

Purpose

Automakers are engaged in manufacturing both efficient and inefficient green cars. The purpose of this paper is to categorize efficient green cars and inefficient green cars followed by improving efficiencies of identified inefficient green cars for distribution fitting.

Design/methodology/approach

The authors have used 2014 edition of secondary data published by the Automotive Research Centre of the Automobile Club of Southern California. The paper provides the methodology of applying data envelopment analysis (DEA) consisting of 50 decision-making units (DMUs) of green cars with six input indices (emission, braking, ride quality, acceleration, turning circle, and luggage capacity) and two output indices (miles per gallon and torque) integrated with Monte Carlo simulation for drawing significant statistical inferences graphically.

Findings

The findings of this study showed that there are 27 efficient and 23 inefficient DMUs along with improvement matrix. Additionally, the study highlighted the best distribution fitting of improved efficient green cars for respective indices.

Research limitations/implications

This study suffers from limitations associated with 2014 edition of secondary data used in this research.

Practical implications

This study may be useful for motorists with efficient listing of green cars, whereas automakers can be benefitted with distribution fitting of improved efficient green cars using Monte Carlo simulation for calibration.

Originality/value

The paper uses DEA to empirically examine classification of green cars and applies Monte Carlo simulation for distribution fitting to improved efficient green cars to decide appropriate range of their attributes for calibration.

Details

Benchmarking: An International Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 16 October 2009

Rahman Farnoosh and Ebrahimi Morteza

The purpose of this paper is to provide a Monte Carlo variance reduction method based on Control variates to solve Fredholm integral equations of the second kind.

497

Abstract

Purpose

The purpose of this paper is to provide a Monte Carlo variance reduction method based on Control variates to solve Fredholm integral equations of the second kind.

Design/methodology/approach

A numerical algorithm consisted of the combined use of the successive substitution method and Monte Carlo simulation is established for the solution of Fredholm integral equations of the second kind.

Findings

Owing to the application of the present method, the variance of the solution is reduced. Therefore, this method achieves several orders of magnitude improvement in accuracy over the conventional Monte Carlo method.

Practical implications

Numerical tests are performed in order to show the efficiency and accuracy of the present paper. Numerical experiments show that an excellent estimation on the solution can be obtained within a couple of minutes CPU time at Pentium IV‐2.4 GHz PC.

Originality/value

This paper provides a new efficient method to solve Fredholm integral equations of the second kind and discusses basic advantages of the present method.

Details

Kybernetes, vol. 38 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

11 – 20 of over 5000