Search results

1 – 10 of over 1000
Article
Publication date: 15 August 2022

Wanting Zhao and Lijun Chen

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties…

Abstract

Purpose

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties, which make the polymer be widely used in coatings, dyes, adhesives and other products. The purpose of this study is to prepare self-crosslinked long fluorocarbon acrylate polymer latex via semi-continuous seeded emulsion technology and carry out comparative study on two different cross-linked monomers.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate (BA) were used as the main monomers, dodecafluoroheptyl methacrylate (DFMA) as the fluoromonomer, hydroxypropyl methacrylate (HPMA) and N-methylol acrylamide (NMA) as cross-linked monomers, and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether (ANPEO10) and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) as compound emulsifiers via the semicontinuous-seeded emulsion polymerization.

Findings

The properties of the polymer emulsions, which are prepared with two different cross-linked monomers, are compared and discussed, and it is concluded that HPMA is more suitable for the preparation of self-crosslinked polymer emulsions. The formula of the polymer latex is ANPEO10: DNS-86 = 1:1, and the mass ratio of the monomers used in the polymer is MMA: BA: DFMA: HPMA = 14.40:14.40:0.60:0.60.

Practical implications

Self-crosslinked long fluorocarbon acrylate polymer latex can be used in many fields such as coatings, dyes, adhesives and other products.

Originality/value

The self-crosslinked long fluorocarbon acrylate polymer latex is prepared by mixing the nonionic emulsifier ANPEO10 and the anionic emulsifier DNS-86 when potassium persulfate is used as the thermal decomposition initiator and the semicontinuous-seeded emulsion technology is adopted and the comparative study on two different cross-linked monomer is carried out, which is not reported in the open literatures.

Article
Publication date: 9 January 2019

Nikita Mhadeshwar, Kunal Wazarkar and Anagha S. Sabnis

This paper aims to prepare acrylic functional ricinoleic acid monomer and incorporate it in conventional miniemulsion polymerization. Subsequently, paints were formulated to study…

Abstract

Purpose

This paper aims to prepare acrylic functional ricinoleic acid monomer and incorporate it in conventional miniemulsion polymerization. Subsequently, paints were formulated to study the variation in final coating properties.

Design/methodology/approach

Synthesis process involved the esterification of ricinoleic acid with 2-hydroxy methyl methacrylate in the presence of FASCAT-4100 catalyst. The final product of the reaction, methacrylated ricinoleic acid (MRA), was confirmed using Fourier-transform infrared spectroscopy and 1H-nuclear magnetic resonance spectroscopy and determining acid and iodine value. Further, MRA was incorporated in various concentrations (1, 2 and 3 Wt.%) along with methyl acrylate and butyl acrylate in conventional miniemulsion polymerization and paints were formulated thereof.

Findings

It was observed that with the addition of MRA monomer, flexibility of emulsion films increased as indicated by glass transition temperature and elongation value (percentage). Moreover, with the addition of MRA monomer, improvement in mechanical and chemical properties of the coatings was observed.

Research limitations/implications

Even a low concentration MRA monomer (as low as 3 per cent) caused a significant reduction in the glass transition temperature of emulsion films. Thus, it can be efficiently used in applications such as adhesives and elastomeric coatings.

Originality/value

The acrylic functional monomer derived from ricinoleic acid is unique and not yet incorporated in miniemulsion polymerization. The synthesized monomer can be used in coatings where low Tg emulsions are required.

Article
Publication date: 4 January 2013

R.D. Kulkarni, M.E. Chaudhari and S. Mishra

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process…

1057

Abstract

Purpose

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process design and quality control aspects associated with the manufacture of mono and multifunctional acrylate monomers.

Design/methodology/approach

This paper reviews commercially important UV cure mono and multifunctional acrylate monomers. It covers their synthesis, catalyst, and appropriate solvents for azeotropic removal of byproducts. The detail discussion on catalysis, basis of design of reactors and commercial plant and the process engineering associated with the manufacture has been supported through citation of synthesis of various acrylate monomers. The methodologies adopted for determination of physical, chemical and compositional characterisation of acrylate monomers have been presented. In addition, the guidelines regarding the bulk storage and commercial handling of acrylates have been reviewed.

Findings

The reaction engineering of esterification reaction between acrylic acid and polyol has been worked out to provide the basis for selection of reactors. The reaction has been modeled as a series – parallel complex reaction for providing explanation for generation of various byproducts/adducts and multiple esters.

Practical implications

The detailed discussion on formation, characterisation and treatment of Michael adducts and purification of acrylate monomers will be relevant for new researchers for further development. A review of guidelines on selection of homogenous and heterogeneous catalysts for synthesis of acrylate monomers has been presented.

Originality/value

Since the related literature on acrylate monomers is scarce, scattered and proprietary, the consolidated coverage in one paper will be useful.

Details

Pigment & Resin Technology, vol. 42 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 September 2016

Feride Akman and Nevin Çankaya

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both…

Abstract

Purpose

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both theoretically and experimentally.

Design/methodology/approach

The monomer was prepared by reacting cyclohexylamine with methacryloyl chloride in the presence of triethylamine at room temperature. The synthesised monomer was characterised by using not only Density Functional Theory (DFT) and Hartree–Fock (HF) with the Gaussian 09 software but also fourier transform infrared (FT–IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.

Findings

Both the experimental and the theoretical methods demonstrated that the monomer was successfully synthesised. The vibrational frequencies, the molecular structural geometry, such as optimised geometric bond angles, bond lengths and the Mulliken atomic charges of NCMA were investigated by using DFT/B3LYP and HF methods with the 3-21G* basis set. The experimental results were compared with theoretical values. The results revealed that the calculated frequencies were in good accord with the experimental values. Besides, frontier molecular orbitals (FMOs) and molecular electrostatic potential of NCMA were investigated by theoretical calculations at the B3LYP/3–21G* basis set.

Research limitations/implications

Monomer and polymer containing a thermosensitive functional group have attracted great interest from both industrial and academic fields. Their characterisation can provide great opportunities for polymer science by using DFT and HF methods.

Originality/value

The monomer containing a thermosensitive functional group and a various polymer may be prepared by using DFT and HF methods described in this paper. The calculated data are greatly important to provide insight into molecular analysis and then used in technological applications.

Article
Publication date: 27 September 2021

Wanting Zhao, Tantan Shao, Xiaolong Chen, Shusen Cao and Lijun Chen

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare…

Abstract

Purpose

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare self-crosslinking fluorocarbon polyacrylate latexes containing different fluorocarbon chain lengths by semi-continuous seeded emulsion polymerization technology.

Design/methodology/approach

Methyl methacrylate (MMA), butyl acrylate (BA), hydroxypropyl methacrylate (HPMA) and fluorine-containing monomers were used as main monomers. The fluorine-containing monomers included hexafluorobutyl methacrylate (HFMA), dodecafluoroheptyl methacrylate (DFMA) and trifluorooctyl methacrylate (TFMA). Potassium persulfate (KPS) was used as thermal decomposition initiator, non-ionic surfactant alkyl alcohol polyoxyethylene (25) ether (DNS-2500) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS) as mixed emulsifier.

Findings

Through optimizing the reaction conditions, the uniform and stable latex is gained. The polymer of structure was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and contact angle (CA) were tested on latex films. The particle size and distribution range of emulsion were tested with nano particle size analyzer. After comprehensively comparing the latexes and films prepared by HFMA, DFMA and TFMA, the performance of DFMA monomer modified is better.

Originality/value

The self-crosslinking acrylic emulsion is prepared via semi-continuous seeded emulsion polymerization, which methyl methacrylate (MMA), butyl acrylate (BA), hydroxypropyl methacrylate (HPMA) and fluorine-containing monomers were used as main monomers. The fluorine-containing monomers were composed of hexafluorobutyl methacrylate (HFMA), dodecafluoroheptyl methacrylate (DFMA) and trifluorooctyl methacrylate (TFMA). Potassium persulfate (KPS) was used as thermal decomposition initiator, non-ionic surfactant alkyl alcohol polyoxyethylene (25) ether (DNS-2500) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS) as mixed emulsifier. There are two main innovations. One is that the self-crosslinking acrylic emulsion is prepared successfully. The other is that the effects of monomers containing different fluorocarbon chain lengths on polyacrylate, such as monomer conversion rate, coagulation rate, mechanical stability, chemical stability, emulsion particle size and storage stability, are studied in detail.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 March 2023

Zheqing Gong and Lijun Chen

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface…

Abstract

Purpose

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface tension and low refractive index. The modified acrylate resin is prepared via solution polymerization of fluorine and silicon monomers, acrylate monomers and other functional monomers. The purpose of this paper is that the fluorine and silicon monomers such as vinyltriethoxysilane (VTES) and hexafluorobutyl methacrylate (HFMA) and some cheap monomers such as styrene are used to prepare the cationic acrylic resin.

Design/methodology/approach

The fluorine and silicon modified cationic acrylic resin is prepared via solution polymerization technology, which uses butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), HFMA, VTES, dimethylaminoethyl methacrylate (DMAEMA) and hydroxypropyl methacrylate (HPMA) as the co-polymerized monomers, propylene glycol monomethyl ether (PGME) as solvent and 2,2-Azo-bis-iso-butyronitrile (AIBN) as the initiator to create a resin to introduce the Si–O and C–F into the polymer chains. The cathodic electrodeposition (CED) coatings were prepared by mixing the synthetic resin and blocked isocyanate.

Findings

The influence of the amounts of HFMA and VETS on the resin and the resultant CED coatings is investigated in detail. The optimum amounts of HFMA and VETS are obtained, which is 7–8% and 4–5%, respectively. The hydrophobicity and the acid and alkaline resistance of the film are improved when VETS and HFMA are introduced to co-polymerize with other monomers.

Originality/value

The fluorine and silicon monomers such as VTES and HFMA and some cheap monomers such as styrene, which are used to prepare the cationic acrylic resin, are seldom reported in the open literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2021

Esra Barim and Feride Akman

This study aimed the synthesis and theoretical/experimental characterization of novel benzofuran-based acrylamide monomer.

Abstract

Purpose

This study aimed the synthesis and theoretical/experimental characterization of novel benzofuran-based acrylamide monomer.

Design/methodology/approach

Novel N-substituted acrylamide monomer, i.e. N-[2–(4-Bromo-benzoyl)-benzofuran-3-yl]-acrylamide (BBFA), was synthesized by reacting (3-Amino-benzofuran-2-yl)-(4-bromophenyl) methanone with acryloylchloride at 0–5oC. Nuclear magnetic resonance (1H-NMR), infrared (FT-IR) and UV-Visible spectrophotometer were used to elucidate the chemical structure of BBFA. Computational studies were performed using the DFT (B3LYP) method on the basis of 6-31 + G (d, p) using Gaussian 09 W and Gauss View 5.0 package in addition to the VEDA program, gauge-independent atomic orbital (GIAO) and time-dependent density functional theory (TD-DFT) methods.

Findings

Molecular geometry and vibration assignments of the BBFA monomer were calculated. The molecular structure of the monomer was examined. Both longest and shortest bonds were determined in the structure. The nucleophilic and electrophilic regions of the monomer were determined. The theoretical spectroscopic data of the monomer were compared with the experimental data; both were consistent with each other. The chemical reactivity of the monomer was also determined.

Originality/value

The synthesized BBFA monomer can be evaluated in many areas; from medicine to industry (such as textiles) owing to the presence of various active functional groups. Indeed, acrylamide copolymers are remarkable materials for polymer science and industry. The data produced in this study is original and adds to the scientific community.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2000

J.S. Ullett, J.W. Schultz and R.P. Chartoff

The build characteristics of two liquid crystal (LC) reactive monomers were studied using a table‐top stereolithography apparatus (TTSLA). LC materials contain stiff, rod‐like…

1223

Abstract

The build characteristics of two liquid crystal (LC) reactive monomers were studied using a table‐top stereolithography apparatus (TTSLA). LC materials contain stiff, rod‐like mesogenic segments in their molecules, which can be aligned causing an anisotropy in properties. When cured in the aligned state the anisotropic structure is “locked in” resulting in materials with anisotropic physical and mechanical properties. By varying the alignment of layers, properties such as thermal expansion coefficient can be optimized. High heat distortion (or glass transition) temperatures are possible depending on the monomer chemical structure. Working curves for the LC resins were developed under various conditions. A permanent magnet placed outside the TTSLA vat was used to uniformly align the monomer in the nematic state. Photo‐initiator type and content; alignment of the nematic phase; and operating conditions affected the working curve parameters. Glass transition temperatures of post‐cured parts ranged from 75 to 1488C depending on the resin and processing conditions. Mechanical analysis data revealed a factor of two difference between glassy moduli measured in the molecular alignment versus the transverse alignment directions. Based on these initial studies, more advanced resins with higher glass transitions are being developed at the University of Dayton.

Details

Rapid Prototyping Journal, vol. 6 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2002

Javier I. Amalvy

Polyurethane (PU) anionomer having 2‐ethoxymethacrylate terminal groups was prepared in a methyl methacrylate/n‐butyl acrylate mixture as a reactive diluent, following a…

Abstract

Polyurethane (PU) anionomer having 2‐ethoxymethacrylate terminal groups was prepared in a methyl methacrylate/n‐butyl acrylate mixture as a reactive diluent, following a prepolymer mixing process. This prepolymer‐acrylic monomer mixture was chain extended in a water/surfactant solution using different dispersion speeds. Stability tests of PU‐acrylic monomer dispersions before polymerization were performed at different temperatures by following the particle size evolution. After the dispersion process the kinetics of batch emulsion polymerization at 70°C using different concentrations of initiator was investigated. Data are compared with published results of batch emulsion copolymerization of methyl methacrylate/n‐butyl acrylate. The effect of triethylamine, used in the prepolymer synthesis, on the emulsion polymerization of acrylic monomers was also studied. The kinetic results indicate that during emulsion polymerization of PU acrylic mixture, some coagulation takes place, mainly due to changes in ionic strength of the medium, before stable latex particles are formed. The presence of the PU prepolymer seems not to affect the kinetics of batch copolymerization of methyl methacrylate/n‐butyl acrylate monomers.

Details

Pigment & Resin Technology, vol. 31 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 1000