Search results

1 – 10 of over 136000
Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 April 2024

Andrew Swan, Anne Schiffer, Peter Skipworth and James Huntingdon

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Abstract

Purpose

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Design/methodology/approach

Following initial scoping searches, further examination was made of key remote monitoring technologies for water infrastructure in the Global South. A standard literature search methodology was adopted to examine these monitoring technologies and their respective deployments. This hierarchical approach prioritised “peer-reviewed” articles, followed by “scholarly” publications, then “credible” information sources and, finally, “other” relevant materials. The first two search phases were conducted using academic search services (e.g. Scopus and Google Scholar). In the third and fourth phases, Web searches were carried out on various stakeholders, including manufacturers, governmental agencies and non-governmental organisations/charities associated with Water, Sanitation and Hygiene (WASH) in the Global South.

Findings

This exercise expands the number of monitoring technologies considered in comparison to earlier review publications. Similarly, preceding reviews have largely focused upon monitoring applications in sub-Saharan Africa (SSA). This paper explores opportunities in other geographical regions and highlights India as a significant potential market for these tools.

Research limitations/implications

This review predominantly focuses upon information/data currently available in the public domain.

Practical implications

Remote monitoring technologies enable the rapid detection of broken water pumps. Broken water infrastructure significantly impacts many vulnerable communities, often leading to the use of less protected water sources and increased exposure to water-related diseases. Further to these public health impacts, there are additional economic disadvantages for these user communities.

Originality/value

This literature review has sought to address some key technological omissions and to widen the geographical scope associated with previous investigations.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 September 2022

Maryna Utkina, Oleg Reznik and Liudmyla Pavlenko

This paper aims to illustrate the main changes during martial law for conducting financial intelligence (monitoring), in particular, in the system of combating legalisation…

Abstract

Purpose

This paper aims to illustrate the main changes during martial law for conducting financial intelligence (monitoring), in particular, in the system of combating legalisation (laundering) of illegally gained income.

Design/methodology/approach

The research methodology includes general scientific methods of cognition. The authors used it to research the theoretical, organisational and legal aspects of financial intelligence (monitoring) in normal situations and during martial law. The authors also use the doctrinal legal research method to analyse and describe the legislation connected to the financial intelligence (monitoring) during martial laws.

Findings

This paper is an original work written by authors that discusses financial intelligence (monitoring) during martial law. The following changes in the conduction of financial intelligence (monitoring) were highlighted: suspension of scheduled and unscheduled on-site inspections; postponement of the entry into force of the provisions of some regulations on the submission of reports in electronic form; and the norms amending to remove administrative barriers in matters of financial intelligence (monitoring) in martial law. The authors also noted that certain rules for the functioning of the financial intelligence (monitoring) system were being clarified. Thus, the financial intelligence (monitoring) regime is being weakened to some extent.

Originality/value

In connection with the introduction of martial law in the territory of Ukraine on 24 February 2022, the most important changes that have taken place in the banking and financial sectors of the economy should be mentioned. In particular, this applies to the issues of the regulation on the statutory and regulatory levels. Certain vital points regarding the mechanism and procedures for conducting financial intelligence (monitoring) also needed to be changed, on a need-to-know basis to adapt to the needs of Ukrainian society during the military aggression of the Russian Federation. This paper is devoted to the study of financial intelligence (monitoring) during martial law. The authors identified the main changes in the procedure for conducting financial intelligence (monitoring) by both the National Bank of Ukraine (one of the main entities) and the legislator (by amending the current regulatory framework).

Details

Journal of Money Laundering Control, vol. 26 no. 5
Type: Research Article
ISSN: 1368-5201

Keywords

Article
Publication date: 25 January 2013

Jianghong Yu, Daping Wang and Chengwu Hu

The purpose of the paper is to propose a novel approach, based on grey clustering decision, to fill in an omission of quantitative monitoring parameter selection methods.

243

Abstract

Purpose

The purpose of the paper is to propose a novel approach, based on grey clustering decision, to fill in an omission of quantitative monitoring parameter selection methods.

Design/methodology/approach

The basic monitoring parameter selection criteria and the corresponding calculation methods are presented. Then, the grey clustering decision model for monitoring parameter optimization selection is constructed, and an integrated weight determination method based on analytic hierarchy process (AHP) and information entropy is provided.

Findings

Basic principle for monitoring parameter selection is proposed and quantitative description is carried out for selection principle in engineering application. Grey clustering decision‐making model for monitoring parameter optimization selection is established. Comprehensive weight ascertainment method based on AHP and information entropy is provided to make the index weight more scientific.

Practical implications

At system design stage, it is of significance to carry out selection and optimization of monitoring parameters. After the optimization of monitoring parameters is confirmed, measurability analysis and design in parallel are carried out for convenience of timely information feedback and system design revision. Therefore, the system integration efficiency is improved and the cost of research and manufacturing is reduced.

Originality/value

Monitoring parameter optimization selection process based on grey clustering decision‐making model is described and the analysis result shows that the proposed method has certain degree of effectiveness, rationality and universality.

Article
Publication date: 5 June 2007

Gao Zhan‐feng, Du Yan‐liang, Sun Bao‐chen and Jin Xiu‐mei

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

1585

Abstract

Purpose

The purpose of this article is to suggest that Fraby‐Perot optic sensor is a practical measurement gage to monitor the strain of great structures such as railway bridges.

Design/methodology/approach

A remote strain monitoring system based on F‐P optic fiber and virtual instrument is designed to monitor the strains of a railway bridge.

Findings

The application results show that the Fraby‐Perot optical fiber sensors can accurately measure strain and they are suitable for the long‐term and automatic monitoring. In addition, the system has several advantages over conventional structural instruments including fast response, ability of both static and dynamic monitoring, absolute measurement, immunity to interferences such as lightning strikes, electromagnetic noise and radio frequency, low attenuation of light signals in long fiber optic cables.

Practical implications

Health monitoring of structures is getting more and more recognition all over the world because it can minimize the cost of reparation and maintenance and ensure the safety of structures. A strain monitoring system based on F‐P optic fiber sensor was developed according to the health monitoring requirements of Wuhu Yangtze River Railway Bridge, which is the first cable‐stayed bridge with a maximum span of 312 m carrying both railway and highway traffic in China. It has run stably in the monitoring field more than two years and fulfilled the monitoring requirement very well. Now the system has been transplanted successfully to the Zhengzhou Yellow Railway Bridge for strain monitoring. So the work can be referenced by other similar health monitoring projects.

Originality/value

Long‐term, real‐time monitoring of strain using FP fiber optic sensors in railway bridge is an innovation. A remote strain data acquisition and real‐time processing are another character of the system. The work studied can be referenced by other structures monitoring, such as tunnel, concrete bridges, concrete and earth dams.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 May 1987

Michael A. Clarke

Corrosion monitoring techniques fall broadly into two categories: those which provide simple numeric data for control purposes, and those which offer a spectrum of information for…

Abstract

Corrosion monitoring techniques fall broadly into two categories: those which provide simple numeric data for control purposes, and those which offer a spectrum of information for diagnostic purposes. Corrosion monitoring can be carried out directly at locations susceptible to corrosion, or indirectly under conditions simulating susceptible but inaccessible points. The interpretation of the data can reflect the purpose of monitoring at the particular location. A consistent form of presentation, and comparative tabulation including statistical analysis can greatly facilitate correlation and trend spotting. Broad spectrum techniques may give an early indication of new problems. An effective internal corrosion monitoring programme can make a major contribution towards the control of plant operating costs.

Details

Anti-Corrosion Methods and Materials, vol. 34 no. 5
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 16 March 2015

Richard Bloss

The purpose of this paper is to review the recent advancements in the development of wearable sensors which can continuously monitor critical medical, assess athletic activity…

1161

Abstract

Purpose

The purpose of this paper is to review the recent advancements in the development of wearable sensors which can continuously monitor critical medical, assess athletic activity, watch babies and serve industrial applications.

Design/methodology/approach

The paper presents an in-depth review of a number of developments in wearable sensing and monitoring technologies for medical, athletic and industrial applications. Researchers and companies around the world were contacted to discuss their direction and progress in this field of medical condition and industrial monitoring, as well as discussions with medical personnel on the perceived benefits of such technology.

Findings

Dramatic progress is being made in continuous monitoring of many important body functions that indicate critical medical conditions that can be life-threatening, contribute to blindness or access activity. In the industrial arena, wearable devices bring remote monitoring to a new level.

Practical implications

Doctors will be able to replace one-off tests with continuous monitoring that provides a much better continuous real-time “view” into the patient’s conditions. Wearable monitors will help provide much better medical care in the future. Industrial managers and others will be able to monitor and supervise remotely.

Originality/value

An expert insight into advancements in medical condition monitoring that replaces the one-time “finger prick” type testing only performed in the doctor’s office. It is also a look at how wearable monitoring is greatly improved and serving athletics, the industry and parents.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 May 2020

Ying Xia

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of…

Abstract

Purpose

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of high structural strength, it will be deformed after being affected by factors such as corrosion and impact during long-term use, and which will affect building safety, especially the public building facilities. The dynamic monitoring of its security is an indispensable means.

Design/methodology/approach

This paper briefly introduced the principle of building information modeling (BIM)-based steel structure building information monitoring and the dynamic information monitoring system based on this principle. Then the monitoring system was used to analyze an operational steel structure suspension bridge in Xinxiang City, Henan Province, China, and compared it with the monitoring system based on back propagation (BP) neural network.

Findings

The results showed that the fitting degree of the dynamic deformation displacement data processed by BIM-based monitoring system was higher than that processed by BP-based monitoring system. Based on the comprehensive comparison of the dynamic data of all monitoring points, the BIM-based monitoring system had higher accuracy of deformation displacement monitoring and reliability of structural safety evaluation.

Originality/value

In summary, the BIM-based steel structure building monitoring system can effectively monitor the dynamic information of steel structure information.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Abstract

Details

Agricultural Markets
Type: Book
ISBN: 978-0-44482-481-3

1 – 10 of over 136000