Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 8 October 2018

An improved technique for face recognition applications

Ihab Zaqout and Mones Al-Hanjori

The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to…

HTML
PDF (1007 KB)

Abstract

Purpose

The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to automatically localize the face in the image and, if necessary, identify the person in the face. Interests in the procedures underlying the process of localization and individual’s recognition are quite significant in connection with the variety of their practical application in such areas as security systems, verification, forensic expertise, teleconferences, computer games, etc. This paper aims to recognize facial images efficiently. An averaged-feature based technique is proposed to reduce the dimensions of the multi-expression facial features. The classifier model is generated using a supervised learning algorithm called a back-propagation neural network (BPNN), implemented on a MatLab R2017. The recognition rate and accuracy of the proposed methodology is comparable with other methods such as the principle component analysis and linear discriminant analysis with the same data set. In total, 150 faces subjects are selected from the Olivetti Research Laboratory (ORL) data set, resulting 95.6 and 85 per cent recognition rate and accuracy, respectively, and 165 faces subjects from the Yale data set, resulting 95.5 and 84.4 per cent recognition rate and accuracy, respectively.

Design/methodology/approach

Averaged-feature based approach (dimension reduction) and BPNN (generate supervised classifier).

Findings

The recognition rate is 95.6 per cent and recognition accuracy is 85 per cent for the ORL data set, whereas the recognition rate is 95.5 per cent and recognition accuracy is 84.4 per cent for the Yale data set.

Originality/value

Averaged-feature based method.

Details

Information and Learning Science, vol. 119 no. 9/10
Type: Research Article
DOI: https://doi.org/10.1108/ILS-03-2018-0023
ISSN: 2398-5348

Keywords

  • Classification
  • Back propagation neural network
  • Face recognition
  • ORL dataset
  • Supervised learning
  • Yale dataset

Access
Only content I have access to
Only Open Access
Year
  • All dates (1)
Content type
  • Article (1)
1 – 1 of 1
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here