Search results

1 – 10 of over 1000
Article
Publication date: 9 January 2018

Robert Bogue

This paper aims to provide a technical insight into recent molecular sensor developments involving nanophotonic materials and phenomena.

Abstract

Purpose

This paper aims to provide a technical insight into recent molecular sensor developments involving nanophotonic materials and phenomena.

Design/methodology/approach

Following an introduction, this highlights a selection of recent research activities involving molecular sensors based on nanophotonic technologies. It discusses chemical sensors, gas sensors and finally the role of nanophotonics in Raman spectroscopy. Brief concluding comments are drawn.

Findings

This shows that nanophotonic technologies are being applied to a diversity of molecular sensors and have the potential to yield devices with enhanced features such as higher sensitivity and reduced size. As several of these sensors can be fabricated with CMOS technology, potential exists for mass-production and significantly reduced costs.

Originality/value

This article illustrates how emerging nanophotonic technologies are set to enhance the capabilities of a diverse range of molecular sensors.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 July 2021

Mehdi Habibi, Yunus Dawji, Ebrahim Ghafar-Zadeh and Sebastian Magierowski

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling…

Abstract

Purpose

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used.

Design/methodology/approach

Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well.

Findings

Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays.

Originality/value

The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.

Article
Publication date: 5 October 2012

Chunjuan Luan and Xiuping Wang

The purpose of this paper is to help China's science and technology (abbr. as S&T) managers and related policy makers to allocate S&T human resources, optimize organizational…

Abstract

Purpose

The purpose of this paper is to help China's science and technology (abbr. as S&T) managers and related policy makers to allocate S&T human resources, optimize organizational systems of laboratories, design and plan some grant projects, and manage other S&T‐related work in the field of nanoscience and nanotechnology, by measuring and mapping of technology‐fields correlation, with nanotechnology as an example.

Design/methodology/approach

Methodologies such as co‐occurrence analysis, correlation analysis, multidimensional scaling (abbr. as MDS) analysis, dendrogram (tree‐like) analysis, etc. are employed to measure and map technology‐fields correlation.

Findings

It is found that the exact relevance degree of any two technology‐fields exists among the top 33 technology‐fields with high frequencies. There are three industrial clusters in Multidimentional Scaling View, that is, nanotechnology used in bio‐medical industry, nanotechnology used in new material industry and nanotechnology used in electronic industry. Hierarchy of any two technology‐fields can be found out in the dendrogram view of the top 33 technology‐fields.

Originality/value

This paper could be of great significance to China's S&T managers and related policy makers, especially in the area of nanotechnology, in selecting and managing generic technology and the findings in this paper can be applied in some other fields of science and technology management in China. Both technology‐fields correlation analysis and MDS and dendrogram view analysis could benefit China's policy makers in managing nanotechnology research and development activities.

Article
Publication date: 1 March 1987

J.R. Barker

The stimulus of the successful semiconductor device miniaturisation programmes coupled to recent progress in synthetic chemistry and molecular engineering has led to the emergence…

1543

Abstract

The stimulus of the successful semiconductor device miniaturisation programmes coupled to recent progress in synthetic chemistry and molecular engineering has led to the emergence of a new inter‐disciplinary activity—molecular electronics—which holds long‐term promise for a new range of electronic materials and devices. From very speculative origins the field has begun to generate important applications based on photoresists, Langmuir‐Blodgett films, electroactive polymers and photochromic materials. A selection of topics ranging from molecular switches, memories, sensors, and the biological interface to prospects for a molecular computer are discussed with special emphasis on features such as stability, self‐organisation and self‐assembly which are unique to molecular systems.

Details

Microelectronics International, vol. 4 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 14 September 2010

P.M.Z. Hasan, Sheikh S. Islam, Tarikul Islam, Ameer Azam and Harsh

The purpose of this paper is to present the dependence of capacitive sensing of organic vapours by porous silicon (PS) on its molecular structure for the realization of a organic…

Abstract

Purpose

The purpose of this paper is to present the dependence of capacitive sensing of organic vapours by porous silicon (PS) on its molecular structure for the realization of a organic vapour sensor, compatible with existing silicon technology, with desired miniaturization and selectivity.

Design/methodology/approach

The method introduces large surface area of PS obtained by electrochemically etching of silicon wafer for characterization of organic vapours through capacitive sensing.

Findings

The method provides a comparative study of sensor response for organic vapour molecules of different structures and leads to an insight into the sensing mechanism.

Research limitations/implications

The surface of PS has been stabilized by thermal oxidation process.

Practical implications

The method is useful for the development of a simple, cost‐effective sensor for selective gas analysis.

Originality/value

The result is an outcome of regular experimental work carried out to observe the capacitive sensing behavior of PS for different organic vapours.

Details

Sensor Review, vol. 30 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 January 2016

Robert Bogue

This paper aims to illustrate how sensors can be fabricated by combining nanomaterials with micro-electromechanical system (MEMS) technology and to give examples of recently…

Abstract

Purpose

This paper aims to illustrate how sensors can be fabricated by combining nanomaterials with micro-electromechanical system (MEMS) technology and to give examples of recently developed devices arising from this approach.

Design/methodology/approach

Following a short introduction, this paper first identifies the benefits of MEMS technology. It then discusses the techniques for integrating carbon nanotubes with MEMS and provides examples of physical and molecular sensors produced by these methods. Combining other gas-responsive nanomaterials with MEMS is then considered and finally techniques for producing graphene on silicon devices are discussed. Brief concluding comments are drawn.

Findings

This shows that many physical and molecular sensors have been developed by combining nanomaterials with MEMS technology. These have been fabricated by a diverse range of techniques which are often complex and multi-stage, but significant progress has been made and some are compatible with standard CMOS processes, yielding fully integrated nanosensors.

Originality/value

This provides an insight into how two key technologies are being combined to yield families of advanced sensors.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 September 2019

Qian Yee Ang and Siew Chun Low

Molecularly imprinted polymers (MIPs) have aroused focus in medicinal chemistry in recent decades, especially for biomedical applications. Considering the exceptional abilities to…

Abstract

Purpose

Molecularly imprinted polymers (MIPs) have aroused focus in medicinal chemistry in recent decades, especially for biomedical applications. Considering the exceptional abilities to immobilize any guest of medical interest (antibodies, enzymes, etc.), MIPs is attractive to substantial research efforts in complementing the quest of biomimetic recognition systems. This study aims to review the key-concepts of molecular imprinting, particularly emphasizes on the conformational adaptability of MIPs beyond the usual description of molecular recognition. The optimal morphological integrity was also outlined in this review to acknowledge the successful sensing activities by MIPs.

Design/methodology/approach

This review highlighted the fundamental mechanisms and underlying challenges of MIPs from the preparation stage to sensor applications. The progress of electrochemical and optical sensing using molecularly imprinted assays has also been furnished, with the evolvement of molecular imprinting as a research hotspot.

Findings

The lack of standard synthesis protocol has brought about an intriguing open question in the selection of building blocks that are biocompatible to the imprint species of medical interest. Thus, in this paper, the shortcomings associated with the applications of MIPs in electrochemical and optical sensing were addressed using the existing literature besides pointing out possible solutions. Future perspectives in the vast development of MIPs also been postulated in this paper.

Originality/value

The present review intends to furnish the underlying mechanisms of MIPs in biomedical diagnostics, with the aim in electrochemical and optical sensing while hypothesizing on future possibilities.

Details

Sensor Review, vol. 39 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 July 2000

Andrew Adamatzky and Chris Melhuish

With the advent of new discoveries in material sciences, it may be possible, in the future, to construct extremely small robots. Explores the idea of employing an excitable medium…

Abstract

With the advent of new discoveries in material sciences, it may be possible, in the future, to construct extremely small robots. Explores the idea of employing an excitable medium in the form of a molecular array of sensors and actuators to provide the controller for a nano‐robot by exploiting decentralised computation.

Details

Kybernetes, vol. 29 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 January 2007

Robert Bogue

To describe the historical development of micro‐electromechanical system (MEMS) sensor technology, to consider its current use in physical, gas and chemical sensing and to…

6835

Abstract

Purpose

To describe the historical development of micro‐electromechanical system (MEMS) sensor technology, to consider its current use in physical, gas and chemical sensing and to identify and discuss future technological trends and directions.

Design/methodology/approach

This paper identifies the early research which led to the development of MEMS sensors. It considers subsequent applications of MEMS to physical, gas and chemical sensing and discusses recent technological innovations.

Findings

This paper illustrates the greatly differing impacts exerted on physical, gas and chemical sensing by MEMS technology. More recent developments are discussed which suggest strong market prospects for MEMS devices with analytical capabilities such as microspectrometers, micro‐GCs, microfluidics, lab‐on‐a‐chip and BioMEMS. This view is supported by various market data and forecasts.

Originality/value

This paper provides a technical and commercial insight into the applications of MEMS technology to physical and molecular sensors from the 1960s to the present day. It also identifies high growth areas for innovative developments in the technology.

Details

Sensor Review, vol. 27 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2002

Robert W. Bogue

Considers the role of a range of materials being used in advanced sensor technology, including diamond, fullerenes, silicon carbide, superconductors, rare earths and III‐V…

2277

Abstract

Considers the role of a range of materials being used in advanced sensor technology, including diamond, fullerenes, silicon carbide, superconductors, rare earths and III‐V compounds. Sensors based on these materials are described and their applications discussed.

Details

Sensor Review, vol. 22 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 1000