Search results

1 – 3 of 3
Article
Publication date: 7 February 2023

Thaileng Oeng, Pisey Keo, Samy Guezouli and Mohammed Hjiaj

This article presents a geometrically non-linear finite element formulation for the analysis of planar two-layer beam-columns taking into account the inter-layer slip and uplift.

Abstract

Purpose

This article presents a geometrically non-linear finite element formulation for the analysis of planar two-layer beam-columns taking into account the inter-layer slip and uplift.

Design/methodology/approach

The co-rotational method is adopted, in which the motion of the element is decomposed into a rigid body motion and a small deformational one. The geometrically linear formulation can be used in the local frame and automatically be transformed into a geometrically nonlinear one. In co-rotational frame, both layers are assumed to be discretely connected at the element ends. Slips and uplifts are assumed to be small. Consequently, the condition of non interpenetration between the layers can be treated using a node-to-node contact algorithm. The resolution methods such as penalty (PM) and augmented Lagrangian method (ALM) with Uzawa updating scheme can be used.

Findings

The non-penetration condition between the layers of composite beams can be formulated by using contact law. It is found that despite a low convergence rate of augmented Lagrangian method compared to penalty method, the former prevents the unrealistic penetration. Besides, it is shown that the buckling load of the composite beam-column is largely affected by the uplift stiffness of the connectors.

Originality/value

The proposed finite element model is capable of simulating accurately the geometrically non-linear behavior of planar two-layer beam-columns taking into account the inter-layer slip and uplift. Regarding uplift, the non-penetration condition is strictly enforced by considering rigorous contact conditions at the interface. The constraint problem is solved using the penalty method or the augmented Lagrangian method with the Uzawa updating scheme.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2011

Rabe Alsafadie, Mohammed Hjiaj, Hugues Somja and Jean‐Marc Battini

The purpose of this paper is to present eight local elasto‐plastic beam element formulations incorporated into the corotational framework for two‐noded three‐dimensional beams…

Abstract

Purpose

The purpose of this paper is to present eight local elasto‐plastic beam element formulations incorporated into the corotational framework for two‐noded three‐dimensional beams. These formulations capture the warping torsional effects of open cross‐sections and are suitable for the analysis of the nonlinear buckling and post‐buckling of thin‐walled frames with generic cross‐sections. The paper highlights the similarities and discrepancies between the different local element formulations. The primary goal of this study is to compare all the local element formulations in terms of accuracy, efficiency and CPU‐running time.

Design/methodology/approach

The definition of the corotational framework for a two‐noded three‐dimensional beam element is presented, based upon the works of Battini .The definitions of the local element kinematics and displacements shape functions are developed based on both Timoshenko and Bernoulli assumptions, and considering low‐order as well as higher‐order terms in the second‐order approximation of the Green‐Lagrange strains. Element forces interpolations and generalized stress resultant vectors are then presented for both mixed‐based Timoshenko and Bernoulli formulations. Subsequently, the local internal force vector and tangent stiffness matrix are derived using the principle of virtual work for displacement‐based elements and the two‐field Hellinger‐Reissner assumed stress variational principle for mixed‐based formulations, respectively. A full comparison and assessment of the different local element models are performed by means of several numerical examples.

Findings

In this study, it is shown that the higher order elements are more accurate than the low‐order ones, and that the use of the higher order mixed‐based Bernoulli element seems to require the least number of FEs to accurately model the structural behavior, and therefore allows some reduction of the CPU time compared to the other converged solutions; where a larger number of elements are needed to efficiently discretize the structure.

Originality/value

The paper reports computation times for each model in order to assess their relative efficiency. The effect of the numbers of Gauss points along the element length and within the cross‐section are also investigated.

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 3 of 3