Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 25 January 2021

Mohamed Arif Raj Mohamed, Rajesh Yadav and Ugur Guven

This paper aims to achieve an optimum flow separation control over the airfoil using a passive flow control method by introducing a bio-inspired nose near the leading edge…

Abstract

Purpose

This paper aims to achieve an optimum flow separation control over the airfoil using a passive flow control method by introducing a bio-inspired nose near the leading edge of the National Advisory Committee for Aeronautics (NACA) 4 and 6 series airfoil. In addition, to find the optimised leading edge nose design for NACA 4 and 6 series airfoils for flow separation control.

Design/methodology/approach

Different bio-inspired noses that are inspired by the cetacean species have been analysed for different NACA 4 and 6 series airfoils. Bio-inspired nose with different nose length, nose depth and nose circle diameter have been analysed on airfoils with different thicknesses, camber and camber locations to understand the aerodynamic flow properties such as vortex formation, flow separation, aerodynamic efficiency and moment.

Findings

The porpoise nose design that has a leading edge with depth = 2.25% of chord, length = 0.75% of chord and nose diameter = 2% of chord, delays the flow separation and improves the aerodynamic efficiency. Average increments of 5.5% to 6° in the lift values and decrements in parasitic drag (without affecting the pitching moment) for all the NACA 4 and 6 series airfoils were observed irrespective of airfoil geometry such as different thicknesses, camber and camber location.

Research limitations/implications

The two-dimensional computational analysis is done for different NACA 4 and 6 series airfoils at low subsonic speed.

Practical implications

This design improves aerodynamic performance and increases the structural strength of the aircraft wing compared to other conventional high lift devices and flow control devices. This universal leading edge flow control device can be adapted to aircraft wings incorporated with any NACA 4 and 6 series airfoil.

Social implications

The results would be of significant interest in the fields of aircraft design and wind turbine design, lowering the cost of energy and air travel for social benefits.

Originality/value

Different bio-inspired nose designs that are inspired by the cetacean species have been analysed for NACA 4 and 6 series airfoils and universal optimum nose design (porpoise airfoil) is found for NACA 4 and 6 series airfoils.

To view the access options for this content please click here
Article
Publication date: 20 June 2019

Mohamed Arif Raj Mohamed, Ugur Guven and Rajesh Yadav

The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the…

Abstract

Purpose

The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the leading edge of the NACA 2412 airfoil.

Design/methodology/approach

Two distinguished methods have been implemented on the leading edge of the airfoil: forward facing step, which induces multiple accelerations at low angle of attack, and cavity/backward facing step, which creates recirculating region (axial vortices) at high angle of attack.

Findings

The porpoise airfoil (optimum bio-inspired nose airfoil) delays the flow separation and improves the aerodynamic efficiency by increasing the lift and decreasing the parasitic drag. The maximum increase in aerodynamic efficiency is 22.4 per cent, with an average increase of 8.6 per cent at all angles of attack.

Research limitations/implications

The computational analysis has been done for NACA 2412 airfoil at low subsonic speed.

Practical implications

This design improves the aerodynamic performance and increases structural strength of the aircraft wing compared to other conventional high-lift devices and flow-control devices.

Originality/value

Different bio-inspired nose designs which are inspired by the cetacean species have been analysed for NACA 2412 airfoil, and optimum nose design (porpoise airfoil) has been found.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources…

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3