Search results

1 – 10 of 509
Open Access
Article
Publication date: 30 April 2021

Mohamed Abbas and Nasser Otayf

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

2415

Abstract

Purpose

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

Design/methodology/approach

This paper presents a novel methodology for optimum energy consumption in wireless sensor networks. The proposed methodology introduces some protocols and logarithms that effectively contributed to reducing energy consumption in these types of networks.

Findings

The results of that comparison showed the ability of those logarithms and protocols to reduce that energy but in varying proportions. It can be concluded that a significant reduction in energy consumption approximately 50% could be obtained by the proposed methodology.

Originality/value

Here, a novel methodology for optimum energy consumption in wireless sensor networks has been introduced.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 23 April 2020

Aatef Hobiny, Faris S. Alzahrani and Ibrahim Abbas

The purposes of this study, a generalized model for thermoelastic wave under three-phase lag (TPL) model is used to compute the increment of temperature, the components of…

Abstract

Purpose

The purposes of this study, a generalized model for thermoelastic wave under three-phase lag (TPL) model is used to compute the increment of temperature, the components of displacement, the changes in volume fraction field and the stress components in a two-dimension porous medium.

Design/methodology/approach

By using Laplace-Fourier transformations with the eigen values methodologies, the analytical solutions of all physical variables are obtained.

Findings

The derived methods are estimated with numerical outcomes which are applied to the porous media in simplified geometry.

Originality/value

Finally, the outcomes are represented graphically to display the difference among the models of the TPL and the Green and Naghdi (GNIII) with and without energy dissipations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2020

Tareq Saeed and Ibrahim Abbas

The purposes of this study, a mathematical model of generalized thermoelastic theory subjected to thermal loading is presented to study the wave propagation in a two-dimensional…

Abstract

Purpose

The purposes of this study, a mathematical model of generalized thermoelastic theory subjected to thermal loading is presented to study the wave propagation in a two-dimensional porous medium.

Design/methodology/approach

By using Fourier–Laplace transforms with the eigenvalue approach, the physical quantities are analytically obtained.

Findings

The derived method is evaluated with numerical results, which are applied to the porous medium in simplified geometry.

Originality/value

Numerical outcomes for all the physical quantities considered are implemented and represented graphically. The variations of temperature, the changes in volume fraction field, the displacement components and the stress components have been depicted graphically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2019

Mohamed I.A. Othman and Sudip Mondal

The purpose of this paper is to introduce the phase-lag models (Lord-Shulman, dual-phase-lag and three-phase-lag) to study the effect of memory-dependent derivative and the…

Abstract

Purpose

The purpose of this paper is to introduce the phase-lag models (Lord-Shulman, dual-phase-lag and three-phase-lag) to study the effect of memory-dependent derivative and the influence of thermal loading due to laser pulse on the wave propagation of generalized micropolar thermoelasticity. The bounding plane surface is heated by a non-Gaussian laser beam with a pulse duration of 10 nanoseconds.

Design/methodology/approach

The normal mode analysis technique is used to obtain the exact expressions for the displacement components, the force stresses, the temperature, the couple stresses and the micro-rotation. Comparisons are made with the results predicted by three theories of the authors’ interest. Excellent predictive capability is demonstrated at a different time also.

Findings

The effect of memory-dependent derivative and the heat laser pulse on the displacement, the temperature distribution, the components of stress, the couple stress and the microrotation vector have been depicted graphically.

Research limitations/implications

Some particular cases are also deduced from the present investigation.

Originality/value

The numerical results are presented graphically and are compared with different three theories for both in the presence and absence of memory-dependent effect and with the results predicted under three theories for two different values of the time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2020

Aatef Hobiny and Ibrahim Abbas

The purpose of this study is to use the generalized model for thermoelastic wave under the dual phase lag (DPL) model to compute the increment of temperature, the components of…

Abstract

Purpose

The purpose of this study is to use the generalized model for thermoelastic wave under the dual phase lag (DPL) model to compute the increment of temperature, the components of displacement, the changes in volume fraction field and the stress components in a two-dimensional (2D) porous medium.

Design/methodology/approach

Using Fourier and Laplace transformations with the eigenvalue technique, the exact solutions of all physical quantities are obtained.

Findings

The derived method is evaluated with numerical results, which are applied to the porous medium in a simplified geometry.

Originality/value

Finally, the outcomes are graphically represented to show the difference among the models of classical dynamical coupled, the Lord and Shulman and DPL.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2020

Aatef Hobiny and Ibrahim Abbas

The purpose of this paper is to provide a method for determining the numerical solutions of the thermal damage of cylindrical living tissues using hyperbolic bioheat model. Due to…

Abstract

Purpose

The purpose of this paper is to provide a method for determining the numerical solutions of the thermal damage of cylindrical living tissues using hyperbolic bioheat model. Due to the complex governing equation, the finite element approach has been adopted to solve these problems. To approve the accuracy of the numerical solution, the numerical outcomes obtained by the finite element approach are compared with the existing experimental study. In addition, the comparisons between the numerical outcomes and the existing experimental data displays that the present mathematical models are efficient tools to evaluate the bioheat transfer in the cylindrical living tissue. Numerical computations for temperatures and thermal damage are presented graphically.

Design/methodology/approach

In this section, the complex equation of bioheat transfer based upon one relaxation time in cylindrical living tissue is summarized by using the finite element method. This method has been used here to get the solution of equation (8) with initial conditions (9) and boundary conditions (10). The finite element technique is a strong method originally advanced for numerical solutions of complex problems in many fields, and it is the approach of choice for complex systems. Another advantage of this method is that it makes it possible to visualize and quantify the physical effects independently of the experimental limits. Abbas and his colleagues [26-34] have solved several problems under generalized thermoelastic theories.

Findings

In this study, the different values of blood perfusion and thermal relaxation time of the dermal part of cylindrical living tissue are used. To verify the accuracy of the numerical solutions, the numerical outcomes obtained by the finite element procedure and the existing experimental study have been compared. This comparison displays that the present mathematical model is an effective tool to evaluate the bioheat transfer in the living tissue.

Originality/value

The validation of the obtained results by using experimental data the numerical solution of hyperbolic bioheat equation is presented. Due to the nonlinearity of the basic equation, the finite element approach is adopted. The effects of thermal relaxation times on the thermal damage and temperature are studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 October 2020

Ibrahim Abbas and Aatef Hobiny

The purpose of this paper is to study the wave propagation in a porous medium through the porothermoelastic process using the finite element method (FEM).

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a porous medium through the porothermoelastic process using the finite element method (FEM).

Design/methodology/approach

One-dimensional (1D) application for a poroelastic half-space is considered. Due to the complex governing equation, the finite element approach has been adopted to solve these problems.

Findings

The effect of porosity and thermal relaxation times in a porothermoelastic material was investigated.

Originality/value

The numerical results for stresses, displacements and temperatures for the solid and the fluid are represented graphically. This work will enable future investigators to have the insight of nonsimple porothermoelasticity with different phases in detail.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 1986

Ugur Yavas and Ghazi Habib

Management writings in the Middle East region are scarce and scattered. This is due to the lack of doctorate programmes offered by educational institutions, the weak links between…

Abstract

Management writings in the Middle East region are scarce and scattered. This is due to the lack of doctorate programmes offered by educational institutions, the weak links between academia and the business world, limited formal and informal networks, the lack of status given to the field of management by national bodies and the lack of a publication culture. A bibliography of management‐related writings in the Middle East is presented, which includes other functional areas such as marketing, finance and accounting. It aims to draw the students' attention to a variety of sources. In compiling the bibliography a review of the literature in Arabic, English and Turkish was undertaken, followed by a survey of the top officials of academic institutions offering management/commerce, business administration degree programmes in the region.

Details

Management Research News, vol. 9 no. 4
Type: Research Article
ISSN: 0140-9174

Keywords

Article
Publication date: 7 June 2013

M. Ferdows, Jashim Uddin, Mohammad Mehdi Rashidi and N. Rahimzadehc

The paper aims to consider non‐viscous, laminar mixed convection boundary‐layer flow over a horizontal moving porous flat plate, with chemical reaction.

Abstract

Purpose

The paper aims to consider non‐viscous, laminar mixed convection boundary‐layer flow over a horizontal moving porous flat plate, with chemical reaction.

Design/methodology/approach

The governing equations are expressed in non‐dimensional form and the series solutions of coupled system of equations are constructed for velocity, temperature and concentration functions using numerical method.

Findings

The investigated parameters are: buoyancy parameter, chemical reaction parameter, order of chemical reaction, Prandtl number and Schmidt number.

Originality/value

The partial differential equations are transformed to ordinary differential equations. The method of one parameter continuous group theory is used for this transformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2010

A. Mahdy and A.J. Chamkha

The purpose of this work is to study the flow of mixed convection and mass transfer of a steady laminar boundary layer about an isothermal vertical flat plate embedded in a…

Abstract

Purpose

The purpose of this work is to study the flow of mixed convection and mass transfer of a steady laminar boundary layer about an isothermal vertical flat plate embedded in a non‐Darcian porous medium in the presence of chemical reaction and viscous dissipation effects.

Design/methodology/approach

The governing partial differential equations are converted into ordinary differential equations by similarity transformation, which are solved numerically by employing the fourth‐order Runge‐Kutta integration scheme with Newton‐Raphson shooting technique.

Findings

It was found that the local Nusselt number was predicted to decrease as either of the chemical reaction parameter or the Eckert number increased. On the other hand, the local Sherwood number was predicted to increase as a result of increasing either of the chemical reaction parameter or the Eckert number. Also, in the absence of viscous dissipation, both the local Nusselt and Sherwood numbers increased as the mixed convection increased.

Originality/value

The paper illustrates chemical reaction and viscous dissipation effects on Darcy‐Forchheimer mixed convection in a fluid saturated porous media.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 509