Search results

1 – 10 of over 6000
Article
Publication date: 20 August 2018

Vesna Javor, Karl Lundengård, Milica Rančić and Sergei Silvestrov

This paper aims to present the approximation of lightning currents waveshapes by the multi-peaked analytically extended function (MP-AEF) for the experimentally measured…

Abstract

Purpose

This paper aims to present the approximation of lightning currents waveshapes by the multi-peaked analytically extended function (MP-AEF) for the experimentally measured channel-base currents in the artificially triggered lightning discharges. Modified transmission line model of lightning return strokes having the channel current both linearly decaying and sinusoidally changing with height (MTLSIN) is used to calculate the lightning electromagnetic field.

Design/methodology/approach

MP-AEF’s parameters for the artificially triggered lightning channel-base currents are calculated by using Marquardt least squares method (MLSM). Lightning electromagnetic fields are calculated based on electromagnetic theory relations, thin-wire antenna model of the vertical lightning channel and the assumption of the perfectly conducting ground. MTLSIN model as an engineering model of lightning strokes is used to obtain the electric field results as these are simultaneously measured in rocket-triggered lightning experiments together with the channel-base currents.

Findings

MP-AEF approximates multi-peaked pulse waveshapes. Some important function parameters are chosen prior to the approximation procedure, such as current peaks and the corresponding time moments of those peaks, which presents an advantage in comparison to other functions. The desired accuracy of approximation is obtained by choosing an adequate number of function terms. MLSM is used for the estimation of unknown parameters. Using MTLSIN model, the influence of the channel height and return stroke speed on the lightning electromagnetic field waveshape is analyzed in this paper.

Research limitations/implications

MP-AEF may be used for approximation of various multi-peaked waveshapes. It has no errors in the points of maxima which is important for the lightning protection systems design. MTLSIN model may be validated by using simultaneously measured lightning electromagnetic fields at various distances from the channel and for channel heights estimated in the experiments. It is also possible to approximate measured current derivatives by MP-AEF and use them for further computation.

Originality/value

MTLSIN model is proposed in this paper for the evaluation of lightning electromagnetic fields induced by artificially triggered lightning discharges. The procedure is based on the approximation of lightning channel-base currents by the multi-peaked analytically extended function previously proposed by the authors. This function may be used not only for representing lightning currents but also for other waveshapes as current derivatives, electric and magnetic fields and their derivatives, which are all important for the lightning protection design. MTLSIN gives lightning electromagnetic fields results which are in better agreement with measured fields than those obtained by other models from literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

Nassima M'ziou, Leila Mokhnache, Ahmed Boubakeur, Zineddine Azzouz and Rafic Kattan

The purpose of this paper is to propose a numerical method in time domain in order to solve the electric and magnetic fields radiated from lightning in the presence of the tall…

Abstract

Purpose

The purpose of this paper is to propose a numerical method in time domain in order to solve the electric and magnetic fields radiated from lightning in the presence of the tall tower. This paper is very important in calculating lightning electromagnetic field – obtaining directly the solution in time domain with a reduced computation time and reduced space memory.

Design/methodology/approach

In this paper, a HYBRID method is proposed for the calculation of the electromagnetic field associated with lightning strikes to tall towers. The proposed method is a combination between a numerical integration method and the finite difference time domain (FDTD) method. The HYBRID method is an alternative approach that takes advantage of this combination to calculate, first, the radiated magnetic field; this field is obtained by the use of the Simpson method, and, second the electric field, based partially on the FDTD method.

Findings

The results of lightning electromagnetic field in the presence of a tall tower obtained by this proposed method: HYBRID method are in agreement with experimental results or simulated results (by the use of other methods: method in frequency domain). This method can be applied to solve the lightning electromagnetic field equation for far distances or close distances from lightning stroke.

Originality/value

This paper presents a temporal method to obtain the lightning electromagnetic field in the presence of a tall tower with reduced space memory and reduced time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2013

Jae‐bok Lee, Jun Zou, Mo Li and Sughun Chang

A fast algorithm is proposed to calculate the lightning electromagnetic field over a perfectly conducting earth surface.

Abstract

Purpose

A fast algorithm is proposed to calculate the lightning electromagnetic field over a perfectly conducting earth surface.

Design/methodology/approach

The channel base current is approximated by a number of sub‐domain quadratic functions using the proposed adaptive sampling technique, and the derivative and integral of the channel base current with respect to time can be analytically expressed. With the help of these approximations, the ideal electromagnetic field of the lightning channel can be evaluated along the lightning channel with respect to the height.

Findings

The computational time can be greatly reduced using the proposed approach to evaluate the electromagnetic field of a lightning channel in the time domain.

Originality/value

The adaptive sampling technique is a general‐purposed approach, which can be potentially used in other applications to fit a function with the minimal number of intervals.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 November 2021

Sami Barmada, Alessandro Formisano, Jesus C. Hernandez, Francisco José J. Sánchez Sutil and Carlo Petrarca

The lightning phenomenon is one of the main threats in photovoltaic (PV) applications. Suitable protection systems avoid major damages from direct strikes but also nearby strikes…

Abstract

Purpose

The lightning phenomenon is one of the main threats in photovoltaic (PV) applications. Suitable protection systems avoid major damages from direct strikes but also nearby strikes may induce overvoltage transients in the module itself and in the power conditioning circuitry, which can permanently damage the system. The effects on the PV system sensibly depend on the converter topology and on the adopted power switch. In the present study, a comparative analysis of the transient response due to a nearby lightning strike (LS) is carried out for three PV systems, each equipped with a different converter, namely, boost, buck and buck–boost, based on either silicon carbide metal oxide semiconductor field effect transistors (SiC MOSFET) or insulated gate bipolar transistors controlled power switch devices, allowing in this way an analysis at different switching frequencies. The purpose of this paper is to present the results of the numerical analysis to help the design of suited protection systems.

Design/methodology/approach

Using a recently introduced three-dimensional semi-analytical method to simulate the electromagnetic transients caused in PV modules by nearby LSs, we investigate numerically the effect of a LS on the electronic circuits connecting the module to the alternate current (AC) power systems. This study adopts numerical simulations because experimental analyses are not easy to perform and does not grant a sufficient coverage of all statistically relevant aspects. The approach was validated in a previous paper against available experimental data.

Findings

It is found that the load voltage is not severely interested by the strike effects, thanks to the low pass filters present at the converter output, whereas a relatively high overvoltage develops between the negative pin of the inner circuitry and the “ground” voltage reference. The overcurrent present in the active switches is hardly comparable because of the different topologies and working frequencies; however, the highest overcurrent is observed in the buck converter topology, with SiC MOSFET technology, although it shows the fastest decay.

Originality/value

This research proposes, to the best of the authors’ knowledge, a comprehensive comparison of the indirect lighting strike effects on the converter connected to PV panels. A proper design of the lightning and surge protection system should take into account such aspects to reduce the risk of induced overvoltage and overcurrent transients.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 February 2020

Saheed Lekan Gbadamosi and Nnamdi I. Nwulu

The purpose of this study is to address the efficiency of power losses representation while still reducing the computational burden of an optimal power flow (OPF) model in…

Abstract

Purpose

The purpose of this study is to address the efficiency of power losses representation while still reducing the computational burden of an optimal power flow (OPF) model in transmission expansion planning (TEP) studies.

Design/methodology/approach

A modified TEP model is formulated with inclusions of linearized approximation of power losses for a large-scale power system with renewable energy sources. The multi-objectives function determines the effect of transmission line losses on the optimal power generation dispatch in the power system with and without inclusion of renewable energy sources with emphasis on minimizing the investment and operation costs, emission and the power losses.

Findings

This study investigates the impact of renewable energy sources on system operating characteristics such as transmission power losses and voltage profile. Sensitivity analysis of the performance for the developed deterministic quadratic programming models was analyzed based on optimal generated power and losses on the system.

Research limitations/implications

In the future, a comparison of the alternating current OPF and direct current (DC) OPF models based on the proposed mathematical formulations can be carried out to determine the efficiency and reduction of computation process of the two models.

Practical implications

This paper proposed an accurate way of computing transmission losses in DC OPF for a TEP context with a view of achieving a minimal computation time.

Originality/value

This paper addresses the following objectives: develop a modified DC OPF with a linearized approximation of power losses in TEP problem with large integration of RES. Investigate the impact of RES on system operating characteristics such as transmission power losses and voltage profile.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 November 2021

Sunilkumar Agrawal and Prasanta Kundu

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission

Abstract

Purpose

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission networks.

Design/methodology/approach

In this analysis, a unified power flow model has been developed for the optimal power flow (OPF) problem for VSC-based high voltage direct current (VSC-HVDC) transmission network and solved using a particle swarm optimization (PSO) algorithm. The impact of the HVDC converter under abnormal conditions considering N-1 line outage contingency is analyzed against the congestion relief of the overall transmission network. The average loadability index is used as a severity indicator and minimized along with overall transmission line losses by replacing each AC line with an HVDC line independently.

Findings

The developed unified OPF (UOPF) model converged successfully with (PSO) algorithm. The OPF problem has satisfied the defined operational constraints of the power system, and comparative results are obtained for objective function with different HVDC test configurations represented in the paper. In addition, the impact of VSC converter location is determined on objective function value.

Originality/value

A novel methodology has been developed for the optimal installation of the converter station for the point-to-point configuration of HVDC transmission. The developed unified OPF model and methodology for selecting the AC bus for converter installation has effectively reduced congestion in transmission lines under single line outage contingency.

Article
Publication date: 12 August 2021

Chong Wang, Yingjie Wang, Kegu Adi, Yunzhong Huang, Yuanming Chen, Shouxu Wang, Wei He, Yao Tang, Yukai Sun, Weihua Zhang, Chenggang Xu and Xuemei He

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and suggestions…

167

Abstract

Purpose

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and suggestions for manufacturing good conductive copper lines of printed circuit board.

Design/methodology/approach

To practically investigates the modified model of conductor roughness, three different kinds of alternate oxidation treatments were used to provide transmission lines with different roughness. The IL results were measured by a vector net analyzer for comparisons with the modified model results.

Findings

An accurate model, with only a 1.8% deviation on average from the measured values, is established. Compared with other models, the modified model is more reliable in industrial manufacturing.

Originality/value

This paper introduces the influence of tiny roughness structures on IL. Besides, this paper discusses the effect of current distribution on IL.

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 1998

Sladjana Ivkovic and Bratislav Milovanovic

An improved model for microwave interdigital filters design and analysis is developed by correction of Denig’s procedure (1989). This model enables correct modeling

604

Abstract

An improved model for microwave interdigital filters design and analysis is developed by correction of Denig’s procedure (1989). This model enables correct modeling multiple‐coupled transmission line structures as parallel sections of single coupled lines. Also, it is very suitable for the design and analysis of the filters by means of widely used microwave CAD programs. In this way the design and analysis of the microwave interdigital filters are significantly simplified. The verification of modified Denig’s procedure is carried out through the two examples of the microstrip interdigital bandpass filters by means of program package LIBRA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 November 2010

Yu‐Chang Pai and Shou‐kuo Sogo Hsu

The purpose of this paper is to present the problem of high‐speed data transmission on flexible printed circuits (FPC) and the common method for transmission signal designs on…

Abstract

Purpose

The purpose of this paper is to present the problem of high‐speed data transmission on flexible printed circuits (FPC) and the common method for transmission signal designs on those FPCs. A new and novel approach using a “voided return path” of the coplanar transmission model is described and the ease of building them in mass production is described.

Design/methodology/approach

Microstrip transmission structures with a “mesh” return were studied and illustrated with emphasis on the problems encountered when the signal changes direction. A new solution using the “voided” return layer of the coplanar transmission model was proposed, simulated, built and tested.

Findings

The use of this novel coplanar structure to solve the problem of gigabit data transmission, with minimum noise and electromagnetic interference on flexible circuits can be achieved at low cost and with the flexibility to have multiple impedances and application for “Dynamic Flex”.

Research limitations/implications

The “voided” coplanar structure has been used successfully. Further, developments are underway to employ a “modified” broadsided‐coupled differential structure that simulated a “twisted pair”.

Originality/value

The paper describes various high‐speed transmission structures on FPC used in computers and servers, combined with high volume mass‐production techniques. It presents the best cost scenario for optimal PCB design flexibility and applications.

Details

Circuit World, vol. 36 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 6000