Search results

1 – 2 of 2
Article
Publication date: 13 March 2020

Hongshuai Gao and Quansheng Sun

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge…

Abstract

Purpose

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge strengthening is growing. Furthermore, bridges are affected by factors such as structure and external environment. With the increase of service time, the deterioration of bridges is also increasing. In order to avoid the waste caused by demolition and reconstruction, it is necessary to strengthen the bridge accurately and effectively to improve the bearing capacity and durability, eliminate the hidden dangers, and ensure the normal operation of the bridge. It is of great significance to study the strengthening methods. Compared with traditional strengthening methods, the advantages of using new materials and new technology to strengthen bridges are more obvious. This paper introduces a new method for bridge active strengthening, called modified polyurethane cement with prestressed steel wire rope (MPC-PSWR).

Design/methodology/approach

Relying on the actual bridge strengthening project, five T-beams of the superstructure of the bridge are taken as the research object, and the T-beams before and after strengthening are evaluated, calculated, and analyzed by finite element simulation and field load test. By comparing the numerical simulation and load test data, the strengthening effect of modified polyurethane cement with prestressed steel wire rope on stiffness, strength, and bearing capacity is verified, which proves that the strengthening effect of MPC-PSWR is effective for strengthening.

Findings

MPC-PSWR can effectively reduce deflection, cracks, and strain, thereby significantly improving the flexural capacity of existing bridges. Under the design load, the deflection, crack width, and stress of the strengthened beams decrease in varying degrees. The overall performance of the beams strengthened by MPC-PSWR has been improved, and the flexural performance meets the requirements of the code.

Originality/value

MPC-PSWR is an innovative bridge-strengthening method. Through the analysis of its MPC-PSWR effect, the MPC-PSWR method with reference to significance for the design and construction of similar bridges is put forward.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 October 2021

Chunwei Li, Quansheng Sun and Yancheng Liu

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built…

Abstract

Purpose

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built bridges. Due to the defective lateral hinge joints, hollow slab bridges are prone to cracking of hinge joint between plates, transverse connection failure and stress of single plates under the action of long-term overload and repeated load. These phenomena seriously affect the bending capacity of the hollow slab bridge. This paper aims to describe a new method of simply supported hollow slab bridge reinforcement called polyurethanecement (PUC) composite flexural reinforcement.

Design/methodology/approach

This paper first studies the preparation and tensile and compressive properties of PUC composite materials. Then, relying on the actual bridge strengthening project, the 5 × 20 m prestressed concrete simply supported hollow slab was reinforced with PUC composites with a thickness of 3 cm within 18 m of the beam bottom. Finally, the load test was used to compare the performance of the bridge before and after the strengthening.

Findings

Results showed that PUC has high compressive and tensile strengths of 72 and 46 MPa. The static test revealed that the measured values and verification coefficients of the measured points were reduced compared with those before strengthening, the deflection and strain were reduced by more than 15%, the measured section stiffness was improved by approximately 20%. After the strengthening, the lateral connection of the bridge, the strength and rigidity of the structure and the structural integrity and safety reserves were all significantly improved. The application of PUC to the flexural strengthening of the bridge structure has a significant effect.

Originality/value

As a new type of material, PUC composite is light, remarkable and has good performance. When used in the bending strengthening of bridge structures, this material can improve the strength, rigidity, safety reserve and bending capacity of bridges, thus demonstrating its good engineering application prospect.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2