Search results

1 – 10 of 321
Article
Publication date: 24 July 2007

N. Touat, M. Pyrz and S. Rechak

This paper seeks to present a new solution algorithm for updating of finite element models in structural dynamics. A random search method is applied to improving the correlation…

Abstract

Purpose

This paper seeks to present a new solution algorithm for updating of finite element models in structural dynamics. A random search method is applied to improving the correlation between the numerical simulation and the measured experimental data.

Design/methodology/approach

Dynamic finite element model updating may be considered as an optimization process. It is solved using modified accelerated random search (MARS) algorithm. The effectiveness of the approach is first tested on benchmark problems. Next, several objective function formulations for dynamic model updating in modal and frequency domains are investigated for numerically simulated vibrating beam. Finally, the algorithm is applied to a real beam‐like structure using measured modal data.

Findings

The MARS algorithm is able to provide very good results in a reduced time even for hard optimization problems. It behaves very well also for the FE dynamic model updating, highly coupled problems. The efficient updating criterion has been proposed and the approach has been validated experimentally.

Research limitations/implications

The method is supposed to be time consuming for large size or complicated objective function problems but the choice of optimization parameters can accelerate the convergence.

Practical implications

The MARS algorithm can be applied to model updating in civil and mechanical engineering.

Originality/value

This paper is the first to apply the MARS algorithm to the problem of FE model updating in dynamics and enables one to obtain very good results. Efficient criteria for model updating have been proposed.

Details

Engineering Computations, vol. 24 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Marzieh Jafari and Khaled Akbari

This paper aims to measure the sensitivity of the structure’s deformation numerical model (NM) related to the various types of the design parameters, which is a suitable method…

Abstract

Purpose

This paper aims to measure the sensitivity of the structure’s deformation numerical model (NM) related to the various types of the design parameters, which is a suitable method for parameter selection to increase the time of model-updating.

Design/methodology/approach

In this research, a variance-based sensitivity analysis (VBSA) approach is proposed to measure the sensitivity of NM of structures. In this way, the contribution of measurements of the structure (such as design parameter values and geometry) on the output of NM is studied using first-order and total-order sensitivity indices developed by Sobol’. In this way the generated data set of parameters by considering different distributions such as Gaussian or uniform distribution and different order as input along with, the resulted deformation variables of NM as output has been submitted to the Sobol’ indices estimation procedure. To the verification of VBSA results, a gradient-based sensitivity analysis (SA), which is developed as a global SA method has been developed to measure the global sensitivity of NM then implemented over the NM’s results of a tunnel.

Findings

Regarding the estimated indices, it has been concluded that the derived deformation functions from the tunnel’s NM usually are non-additive. Also, some parameters have been determined as most effective on the deformation functions, which can be selected for model-updating to avoid a time-consuming process, so those may better to be considered in the group of updating parameters. In this procedure for SA of the model, also some interactions between the selected parameters with other parameters, which are beneficial to be considered in the model-updating procedure, have been detected. In this study, some parameters approximately (27 per cent of the total) with no effect over the all objective functions have been determined to be excluded from the parameter candidates for model-updating. Also, the resulted indices of implemented VBSA were approved during validation by the gradient-based indices.

Practical implications

The introduced method has been implemented for a circular lined tunnel’s NM, which has been created by Fast Lagrangian Analysis of Continua software.

Originality/value

This paper plans to apply a statistical method, which is global on the results of the NM of a soil structure by a complex system for parameter selection to avoid the time-consuming model-updating process.

Article
Publication date: 5 September 2016

Bimo Prananta, Toni Kanakis, Jos Vankan and Rien van Houten

The present paper aims to describe the model updating of a small aircraft dynamic finite element model (FEM) to improve its agreement with ground vibration test (GVT) data.

Abstract

Purpose

The present paper aims to describe the model updating of a small aircraft dynamic finite element model (FEM) to improve its agreement with ground vibration test (GVT) data.

Design/methodology/approach

An automatic updating method using an optimization procedure is carried out. Instead of using dedicated updating tools, the procedure is implemented using standard MSC/NASTRAN because of wide availability of the software in small aircraft industries. The objective function is defined to minimize the differences in the natural frequency and the differences in the mode shape between the analytical model and the GVT data. Provision has been made to include the quantification of confidence in both the GVT data and in the initial model. Parameter grouping is carried out to reduce the number of design parameters during the optimization process.

Findings

The optimization module of standard finite element (FE) software can be effectively used to reduce the differences between the GVT and the FEM in terms of frequency and mode shape satisfactorily. The strategy to define the objective function based on minimizing the mode shape error can reduce the improvement in the frequency error. The required user interference can be kept low.

Originality/value

The most important contribution of the present paper concerns the combination of strategies to define the objective function and selection of the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2017

Rafael Castro-Triguero, Enrique Garcia-Macias, Erick Saavedra Flores, M.I. Friswell and Rafael Gallego

The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction…

Abstract

Purpose

The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction with ambient vibration tests.

Design/methodology/approach

In a first stage, a numerical pre-test analysis of the full bridge is performed, using standard beam-type finite elements with isotropic material properties. This approach offers a first structural model in which optimal sensor placement (OSP) methodologies are applied to improve the system identification process. In particular, the effective independence (EFI) method is used to determine the optimal locations of a set of sensors. Ambient vibration tests are conducted to determine experimentally the modal characteristics of the structure. The identified modal parameters are compared with those values obtained from this preliminary model. To improve the accuracy of the numerical predictions, the material response is modeled by means of a homogenization-based multi-scale computational approach. In a second stage, the structure is modeled by means of three-dimensional solid elements with the above material definition, capturing realistically the full orthotropic mechanical properties of wood. A genetic algorithm (GA) technique is adopted to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.

Findings

An overall good agreement is found between the results of the updated numerical simulations and the corresponding experimental measurements. The longitudinal and transverse Young's moduli, sliding and rolling shear moduli, density and natural frequencies are computed by the present approach. The obtained results reveal the potential predictive capabilities of the present GA/multi-scale/experimental approach to capture accurately the actual behavior of complex materials and structures.

Originality/value

The uniqueness and importance of this structure leads to an intensive study of its structural behavior. Ambient vibration tests are carried out under environmental excitation. Extraction of modal parameters is obtained from output-only experimental data. The EFI methodology is applied for the OSP on a large-scale structure. Information coming from several length scales, from sub-micrometer dimensions to macroscopic scales, is included in the material definition. The strong differences found between the stiffness along the longitudinal and transverse directions of wood lumbers are incorporated in the structural model. A multi-scale model updating approach is carried out by means of a GA technique to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2004

A. Deraemaeker, P. Ladevèze and T. Romeuf

In this paper, we discuss the application of the constitutive relation error (CRE) to model updating and validation in the context of uncertain measurements. First, a parallel is…

Abstract

In this paper, we discuss the application of the constitutive relation error (CRE) to model updating and validation in the context of uncertain measurements. First, a parallel is drawn between the CRE method and a general theory for inverse problems proposed by Tarantola. Then, an extension of the classical CRE method considering uncertain measurements is proposed. It is shown that the proposed mechanics‐based approach for model validation is very effective in filtering noise in the experimental data. The method is applied to an industrial structure, the SYLDA5, which is a satellite support for Ariane5. The results demonstrate the robustness of the method in actual industrial situations.

Details

Engineering Computations, vol. 21 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2021

Yutian Yin, Hongda Zhou, Cai Chen, Yi Zheng, Hongqiao Shen and Yubing Gong

The simulated temperature profile of the printed circuit board assembly (PCBA) during reflow soldering process deviates from the actual profile. To reduce this relative deviation…

Abstract

Purpose

The simulated temperature profile of the printed circuit board assembly (PCBA) during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the Multi-Objective Genetic Algorithm (MOGA) optimizing method is proposed.

Design/methodology/approach

The simulated temperature profile of the PCBA during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the MOGA optimizing method is proposed.

Findings

Several critical influencing parameters such as temperature and the convective heat transfer coefficient of the specific temperature zones are selected as the correction parameters. The hyper Latins sampling method is implemented to distribute the design points, and the Kriging response surface model of the soldering process is constructed. The updated model is achieved and validated by the test. The relative derivation is reduced from the initial value of 43.4%–11.8% in terms of the time above the liquidus line.

Originality/value

A new strategy based on the Kriging response surface and the MOGA optimizing method is proposed.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 September 2014

Yanhui Zhang and Wenyu Yang

– The purpose of this paper is to discuss the characteristics of several stochastic simulation methods applied in computation issue of structure health monitoring (SHM).

Abstract

Purpose

The purpose of this paper is to discuss the characteristics of several stochastic simulation methods applied in computation issue of structure health monitoring (SHM).

Design/methodology/approach

On the basis of the previous studies, this research focusses on four promising methods: transitional Markov chain Monte Carlo (TMCMC), slice sampling, slice-Metropolis-Hasting (M-H), and TMCMC-slice algorithm. The slice-M-H is the improved slice sampling algorithm, and the TMCMC-slice is the improved TMCMC algorithm. The performances of the parameters samples generated by these four algorithms are evaluated using two examples: one is the numerical example of a cantilever plate; another is the plate experiment simulating one part of the mechanical structure.

Findings

Both the numerical example and experiment show that, identification accuracy of slice-M-H is higher than that of slice sampling; and the identification accuracy of TMCMC-slice is higher than that of TMCMC. In general, the identification accuracy of the methods based on slice (slice sampling and slice-M-H) is higher than that of the methods based on TMCMC (TMCMC and TMCMC-slice).

Originality/value

The stochastic simulation methods evaluated in this paper are mainly two categories of representative methods: one introduces the intermediate probability density functions, and another one is the auxiliary variable approach. This paper provides important references about the stochastic simulation methods to solve the ill-conditioned computation issue, which is commonly encountered in SHM.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 May 2022

Mingwei Hu, Hongwei Sun, Liangchuang Liao and Jiajian He

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with…

Abstract

Purpose

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with high precision and can eliminate the modeling error between the actual stiffness model and the theoretical stiffness model.

Design/methodology/approach

To simultaneously ensure the computational efficiency and modeling accuracy of the stiffness model, this method introduces the finite element substructure method (FESM) into the virtual joint method (VJM). The stiffness model of the cobots is built by integrating several 6-degree of freedom virtual joints that represent the elastic deformation of the cobot modules, and the stiffness matrices of these modules can be identified and obtained by the FESM. A model-updating method is proposed to identify stiffness influence coefficients, which can eliminate the modeling error between the actual prototype model and the theoretical finite element model.

Findings

The average relative error and the cycle time of the proposed method are approximately 6.14% and 1.31 ms, respectively. Compared with other stiffness modeling methods, this method not only has high modeling accuracy in high dexterity poses but also in low dexterity poses.

Originality/value

A hybrid stiffness modeling method is introduced to integrate the modeling accuracy of the FESM into the VJM. Stiffness influence coefficients are proposed to eliminate the modeling error between the theoretical and actual stiffness models.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 April 2018

Mohammad Gharaibeh

One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains…

Abstract

Purpose

One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains copper layers, woven fabrics, plated-through holes and so forth. Therefore, it is often acceptable to obtain equivalent orthotropic material properties and use them in the simulation. This paper aims to provide a research methodology to produce equivalent FE models for board-level electronic packages.

Design/methodology/approach

In this methodology, the FE models’ data were correlated with experimental modal analysis results in terms of natural frequencies and mode shapes. Statistical factorial analysis was used to examine the electronic assembly material properties effect on the structure’s resonant frequencies. The equivalent material properties of the PCB were adjusted using the optimization tool available in ANSYS software for free boundary conditions. The equivalent FE model was then validated for the fixed boundary conditions.

Findings

The resultant FE models were in great match with the measured data in terms of resonant frequencies and mode shapes. The so-developed models can be further used in the analysis of the dynamic response of the electronic packages and solder interconnects.

Originality/value

The current approach provides a sophisticated research methodology to provide high-accuracy FE models of electronic assemblies subjected to vibration. The main value of this approach is to first test the effect of each material property on the package dynamic characteristics before starting the correlation process, then to automate the correlation algorithm using the built-in FE model updating feature available in ANSYS software.

Details

Microelectronics International, vol. 35 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 October 2017

Qiao Sun, Shengxiu Zhang, Lijia Cao, Xiaofeng Li and Naixin Qi

The purpose of this paper is to improve the robustness of the traditional Bhattacharyya metric for the effect of histogram quantization in the histogram-based visual tracking…

Abstract

Purpose

The purpose of this paper is to improve the robustness of the traditional Bhattacharyya metric for the effect of histogram quantization in the histogram-based visual tracking. However, the traditional Bhattacharyya metric neglects the correlation of crossing-bin and is not robust for the effect of histogram quantization.

Design/methodology/approach

In this paper, the authors propose a visual tracking method via crossing-bin histogram Bhattacharyya similarity in the particle filter.

Findings

A crossing-bin matrix is introduced into the traditional Bhattacharyya similarity for measuring the reference histogram and the candidate histogram, and the basic tasks of measure such as maximum similarity of self and the triangle inequality are proven. The authors use the proposed measure in the particle filter visual tracking framework and address a model update strategy based on the crossing-bin histogram Bhattacharyya similarity to improve the robustness of visual tracking.

Originality/value

In the experiments using the famous challenging benchmark sequences, precision of the proposed method increases by 12.8 per cent comparing the traditional Bhattacharyya similarity and the cost time decreases by 38 times comparing the incremental Bhattacharyya similarity. The experimental results show that the proposed method can track the object robustly and rapidly under illumination change and occlusion.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 321