Search results

1 – 10 of 32
Article
Publication date: 28 February 2020

Shweta Singh, Amar Nath Tiwari and S.N. Singh

For vector control of permanent magnet synchronous motor (PMSM) requires motor speed and rotor position estimation. The precision of the open-loop techniques of the stator flux…

Abstract

Purpose

For vector control of permanent magnet synchronous motor (PMSM) requires motor speed and rotor position estimation. The precision of the open-loop techniques of the stator flux and speed for vector control PMSM drive drops as mechanical speed decreases. The stator resistance and estimated stator flux values crisscross have a huge effect on the transient and steady-state performance of the drive at lower speed. The framework turns out to be increasingly strong against parameter crisscross and signal noises by using adaptive observers for estimation of speed and flux.

Design/methodology/approach

This paper presents a comparison of two-speed observers for the vector control PMSM drive: the sliding mode observer (SMO) and the model reference adaptive system (MRAS). A comprehensive analysis of SMO and MRAS respects dynamic, steady-state performance and robustness, affectability, stability and computational complexity has been introduced. The abstract of the advantages and disadvantages of both observer and their comparative analysis have also been discussed.

Findings

Dynamic performance steady-state performance and robustness, affectability and stability.

Originality/value

This paper presents a sensorless scheme, namely, MRAS and SMO for control of PMSM drive. These sensorless techniques have been tested for a PMSM motor drive and the motor performance was compared for both techniques. Matlab/Simulink based simulation results conclude that the adaptive methods improve dynamic response, reduces torque ripples and extended speed range.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 November 2018

Aymen Omari, Bousserhane Ismail Khalil, Abdeldjebar Hazzab, Bousmaha Bouchiba and Fayssal ElYamani Benmohamed

The major disadvantage of the field-oriented control (FOC) scheme of induction motors is its dependency on motor parameter variations because of the temperature rise. Among the…

Abstract

Purpose

The major disadvantage of the field-oriented control (FOC) scheme of induction motors is its dependency on motor parameter variations because of the temperature rise. Among the motor parameters, rotor resistance is a parameter that can degrade the robustness of FOC scheme. An inaccurate setting of the rotor resistance in the slip frequency may result in undesirable cross coupling and performance degradation. To overcome this disadvantage, the purpose of this paper is to propose a model reference adaptive system (MRAS) rotor time constant tuning to improve the induction motor drive performance and to compensate the flux orientation error in vector control law.

Design/methodology/approach

First, the dynamic model and the indirect field-oriented control of induction motor are derived. Then, an inverse rotor time constant tuning is proposed based on MRAS theory where a new adaptation signal formulation is used as reference model, and the estimated stator currents obtained from induction motors (IM) state space resolution is used in the adaptive model.

Findings

The effectiveness and robustness of IM speed control with the proposed MRAS inverse rotor time constant estimator is verified through MATrix LABoratory/Simulink model simulation and laboratory experimental results. The simulation and experimental results show good transient drive performances, satisfactory for rotor resistance estimation and robustness with regard to uncertainties and load torque disturbance.

Originality/value

This paper presents an online tuning of the inverse rotor time constant using a new adaptation signal MRAS model. The proposed estimator is proved to guarantee the stability for different operating conditions, especially in very low/zero speed region and heavy load torque. The stability analysis of the proposed estimation procedure is also demonstrated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

F.E. Benmohamed, I.K. Bousserhane, A. Kechich, B. Bessaih and A. Boucheta

The end-effects is a well-recognized phenomenon occurring in the linear induction motor (LIM) which makes the analysis and control of the LIM with good performance very difficult…

Abstract

Purpose

The end-effects is a well-recognized phenomenon occurring in the linear induction motor (LIM) which makes the analysis and control of the LIM with good performance very difficult and can cause additional significant non-linearities in the model. So, the compensation of parameters uncertainties due to these effects in the control system is very necessary to get a robust speed control. The purpose of this paper is to propose a new technique of LIM end-effects estimation using the inverse rotor time constant tuning in order to compensate the flux orientation error in the indirect field-oriented control (IFOC) control law.

Design/methodology/approach

First, the dynamic model of the LIM taking into consideration the end-effects based on Duncan model is derived. Then, the IFOC for LIM speed control with end-effects compensation is derived. Finally, a new technique of LIM end-effects estimation is proposed based on the model reference adaptive system (MRAS) theory using the instantaneous active power and the estimated stator currents vector. These estimated currents are obtained through the solution of LIM state equations.

Findings

Simulations were carried out in MATLAB/SIMULINK to demonstrate the effectiveness and robustness of LIM speed control with the proposed MRAS inverse rotor time constant tuning to estimate end-effects value. The numerical validation results show that the proposed scheme permits the drive to achieve good dynamic performance, satisfactory for the estimated end-effects of the LIM model and robustness to uncertainties.

Originality/value

The end-effects causes a drop in the magnetizing, primary and the secondary inductance, requiring a more complex LIM control scheme. This paper presents a new approach of LIM end-effect estimation based on the online adaptation and tuning of the LIM inductances. The proposed scheme use the inverse rotor time constant tuning for end-effects correction in LIM vector control block.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

T. Orlowska‐Kowalska and M. Dybkowski

This paper aims to obtain an accurate and robust estimation method of the rotor flux and speed for the sensorless induction motor (IM) drive.

Abstract

Purpose

This paper aims to obtain an accurate and robust estimation method of the rotor flux and speed for the sensorless induction motor (IM) drive.

Design/methodology/approach

The reduced order observer has been used as an online tuned rotor flux model in the model reference adaptive system (MRAS) concept applied for the IM speed estimation. The output of this observer was used also as a feedback signal required in the direct field‐oriented control (DFOC) structure of the IM.

Findings

It is shown that a new rotor flux and speed estimator are more robust to motor parameter changes in comparison with the classical MRAS estimator and can work stably in the DFOC structure, in the wide speed range, even for relatively high (50 per cent) identification errors of equivalent circuit parameters of the IM.

Research limitations/implications

The investigation looked mainly at the estimation accuracy performance and whole system stability while economic issues will still need to be addressed.

Practical implications

The proposed new improved MRAS speed estimator can be easily realised using modern digital signal processors. The implementation was tested in an experimental set‐up with floating point DSP used as the system controller. The fixed‐point realisation needs to be developed to obtain the practical application in the industrial drive systems.

Originality/value

The application of the reduced order flux observer as a tuned flux model in the MRAS type speed estimator instead of the simple, but very sensitive to motor parameter uncertainties, current flux model, enables much better accuracy and stability of the rotor speed estimation in the complex DFOC structure than in the case of classical MRAS estimator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 July 2022

Mukesh Kumar and Sukanta Das

This paper aims to suggest a parameter independent and simple speed estimator for primary field-oriented control of a promising electro-mechanical energy conversion device in the…

Abstract

Purpose

This paper aims to suggest a parameter independent and simple speed estimator for primary field-oriented control of a promising electro-mechanical energy conversion device in the form of brushless doubly-fed reluctance machine (BDFRM) drive.

Design/methodology/approach

The speed estimation algorithm, in this context, is formulated using a modified secondary winding active power (mPs)-based model reference adaptive system (MRAS). The performance of the proposed estimator is verified through computer aided MATLAB simulation study, compared with conventional active power-based MRAS and further supported with experimental validation using a 1.6 kW BDFRM prototype run by a dSPACE-1103 controller.

Findings

The formulation of mPs-MRAS is insensitive to any machine parameters and does not involve any integration/differentiation terms. Thus, any deviation therein does not hinder the performance of the mPs-MRAS-based speed estimator. The proposed speed estimator shows stable behavior for variable speed-constant load torque operation in all the four quadrants.

Originality/value

The formulation of mPs-MRAS is insensitive to any machine parameter and does not involve any integration/differentiation terms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Mohammad Tabatabaei

– The purpose of this paper is to present a two-loop approach for velocity control of a permanent magnet synchronous motor (PMSM) under mechanical uncertainties.

Abstract

Purpose

The purpose of this paper is to present a two-loop approach for velocity control of a permanent magnet synchronous motor (PMSM) under mechanical uncertainties.

Design/methodology/approach

The inner loop calculates the two-axis stator reference voltages through a feedback linearization method. The outer loop employs an RST control structure to compute the q-axis stator reference current. To increase the robustness of the proposed method, the RST controller parameters are adapted through a fractional order model reference adaptive system (FO-MRAS). The fractional order gradient and Lyapunov methods are utilized as adaptation mechanisms.

Findings

The effect of the fractional order derivative in the load disturbance rejection, transient response speed and the robustness is verified through computer simulations. The simulation results show the effectiveness of the proposed method against the external torque and mechanical parameters uncertainties.

Originality/value

The proposed FO-MRAS based on Lyapunov adaptation mechanism is proposed for the first time. Moreover, application of the FO-MRAS for velocity control of PMSM is presented for the first time.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Piotr Derugo and Krzysztof Szabat

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence…

2521

Abstract

Purpose

Various control structures and approaches are in use nowadays. Development of new ideas allows to obtain better quality in control of different industrial processes and hence better quality of products. As it may seem that everything in the classical systems has already been discovered, more and more research centres are tending to incorporate fuzzy or neural control systems. The purpose of this paper is to present an application of the adaptive neuro-fuzzy PID speed controller for a DC drive system with a complex nonlinear mechanical part.

Design/methodology/approach

The model of the driven object including such elements as nonlinear shaft with backlash and friction has been modelled using Matlab-Simulink software. Afterwards experimental verification has been made using a dSPACE control card and experimental system with two DC motors connected with an elastic shaft.

Findings

The presented study shown that the adaptive controller is able to damp the torsional vibration effectively even for the wide range of the system nonlinearities. What is more the design approach for controllers design parameters has been described. Proposed approach is based on requested properties of system. Using proposed tuning scheme no detailed information about the object are needed.

Originality/value

This paper presents for the first time fully an PID adaptive neuro-fuzzy controller. The inputs are the weighted tracking error, error’s derivative and integrated error. What is more the adaptation algorithm consists of a model tracking error its derivative and integer. Also the proposed tuning algorithm in such a form is an original outcome.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Zineb Kandoussi, Zakaria Boulghasoul, Abdelhadi Elbacha and Abdelouahed Tajer

The purpose of this paper is to improve the performance of sensorless vector control of induction motor drives by developing a new sliding mode observer for rotor speed and fluxes…

Abstract

Purpose

The purpose of this paper is to improve the performance of sensorless vector control of induction motor drives by developing a new sliding mode observer for rotor speed and fluxes estimation from measured stator currents and voltages and estimated stator currents.

Design/methodology/approach

In the present paper, the discontinuity in the sliding mode observer is smoothed inside a thin boundary layer using fuzzy logic techniques instead of sign function to reduce efficiently the chattering phenomenon that affects the rotor speed.

Findings

The feasibility of the proposed fuzzy sliding mode observer has been verified by experimentation. The experimental results are obtained with a 1 kW induction motor using a dSPACE system with DS1104 controller board showing clearly the effectiveness of the proposed approach in terms of dynamic performance compared to the classical sliding mode observer.

Practical implications

The experimental results of the whole control structure highlights that this kind of sensorless induction motor drive can be used for variable speed drive in industrial applications such as oil drilling, electric vehicles, high speed trains (HSTs) and conveyers. Such drives may work properly at zero and low speed in both directions of rotation.

Originality/value

Both the proposed speed observer and the classical sliding mode observer have been developed and implemented experimentally with other adaptive observers for detailed comparison under different operating conditions, such as parameter variation, no-load/load disturbances and speed variations in different speed operation regions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Bogdan Fabianski and Krzysztof Zawirski

The paper is concerned about parameter adaptation of a novel, simplified and nonlinear switched reluctance motor (SRM) model. The purpose of the presented on-line procedure is to…

Abstract

Purpose

The paper is concerned about parameter adaptation of a novel, simplified and nonlinear switched reluctance motor (SRM) model. The purpose of the presented on-line procedure is to give an opportunity to set the model parameters’ values to obtain a relatively good convergence with the real control object. This is important when a reference model is used for control (e.g. optimal) or object state classification (e.g. fault detection) purposes. The more convergent the real object model is, the better operation quality may be expected.

Design/methodology/approach

In the paper, a 12/8 pole’s SRM as a control object is analyzed. The model equations were verified experimentally by comparing phase current model estimations with reference (measured) ones at different operational points. Differential equations of motor winding currents were chosen as an approximation function in the fitting (parameter adaptation) process using the Newton and Gauss–Newton methods. The structure of the adaptation system is presented along with the implementation in simulation environment.

Findings

It was confirmed in the simulation tests that Newton and Gauss–Newton methods of nonlinear model parameters’ adaptation may be used for the SRM. The introduced fitting structure is well suited for implementation in real-time, embedded systems. The proposed approximation function could be used in process as an expansion to Jacobian and Hessian matrices. The χ2 (chi2) coefficient (commonly used to measure the quality of the signal fitting) reduced to a low value during the adaptation process. Another introduced quality coefficient shows that the Newton method is slightly better in scope of the entire adaptation process time; however, it needs more computational power.

Research limitations/implications

The proposed structure and approximation function formula in the parameters’ adaptation system is appropriate for sinusoidal distribution of the motor phase inductance value along the rotor angle position. The inductance angular shape is an implication of the mechanical construction – with appropriate dimensions and materials used. In the presented case, the referenced model is a three-phase SRM in 12/8 poles configuration used as a main drive part of Maytag Neptune washing machine produced by Emerson Motors.

Practical implications

The presented method of parameter adaptation for novel, simplified and nonlinear SRM model provides an opportunity for its use in embedded, real-time control systems. The convergent motor model, after the fitting procedure (when the estimations are close to the measurements from real object), may be used for solving many well-known control challenges such as detection of initial rotor position, sensorless control, optimal control, fault-tolerant control end in fault detection (FD) systems. The reference model may be used in FD in the way of deducing signals from the difference between the estimated and measured ones.

Originality/value

The paper proposed a new system of parameter adaptation for the evaluated nonlinear, simplified 12/8 poles SRM model. The relative simplicity of the proposed model equations provides the possibility of implementing an adaptation system in an embedded system that works in a real-time regime. A Two adaptation methods – Newton and Gauss–Newton – have been compared. The obtained results shown that the Newton fitting method is better in the way of the used quality indicator, but it consumes more computational power.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

G.R. Arab Markadeh and J. Soltani

To propose and adaptive nonlinear controller for adjustable speed sensorless induction motor drive, using a novel adaptive rotor flux observer. The adaptive flux observer scheme…

Abstract

Purpose

To propose and adaptive nonlinear controller for adjustable speed sensorless induction motor drive, using a novel adaptive rotor flux observer. The adaptive flux observer scheme in this paper provides the simultaneous estimation of the rotor speed, rotor resistance and stator resistance.

Design/methodology/approach

The IM rotor speed and rotor flux controllers are designed based on combination of input‐output feedback linearizing, linear optimal feedback control and sliding‐mode (SM) control methods. In addition a novel adaptive rotor flux observer is designed based on Lyapunov theory. The proposed control method is tested by simulation and experimental results.

Findings

The composite rotor speed and rotor flux observer in combination with adaptive rotor flux scheme guarantees a perfect speed, torque and flux tracking control for the IM sensorless drive.

Research limitations/implications

The proposed control method has a drawback in the IM low speed operating region. Additional research may be able to solve this problem as well as should analyze the sensitivity of the IM drive system performance with respect to variation of the system controller and adaptive flux observer gains. In addition, this research should also analyze the influence of sampling rate, truncation errors, measurement noise, simplifying model assumption and magnetic saturation.

Practical implications

The proposed control method can be used for adaptive and robust control of the IM drive where an optimal efficiency is desired subject to the variable load torque demand.

Originality/value

Based on Lyapunov theory, a novel adaptive rotor flux observer is introduced in which the rotor speed, rotor resistance and stator resistance are treated as the unknown constant parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 32