Search results

1 – 10 of over 2000
Article
Publication date: 7 November 2019

Sk Abdul Kaium, Sayed Abul Hossain and Jafar Sadak Ali

The purpose of this paper is to highlight that the need for improved system identification methods within the domain of modal analysis increases under the impulse of the…

Abstract

Purpose

The purpose of this paper is to highlight that the need for improved system identification methods within the domain of modal analysis increases under the impulse of the broadening field of applications, e.g., damage detection and vibro-acoustics, and the increased complexity of today’s structures. Although significant research efforts during the last two decades have resulted in an extensive number of parametric identification algorithms, most of them are certainly not directly applicable for modal parameter extraction. So, based on this, the aim of the present work is to develop a technique for modal parameter extraction from the measured signal.

Design/methodology/approach

A survey and classification of the different modal analysis methods are made; however, the focus of this thesis is placed on modal parameter extraction from measured time signal. Some of the methods are examined in detail, including both single-degree-of-freedom and multi-degree-of-freedom approaches using single and global frequency-response analysis concepts. The theory behind each of these various analysis methods is presented in depth, together with the development of computer programs, theoretical and experimental examples and discussion, in order to evaluate the capabilities of those methods. The problem of identifying properties of structures that possess close modes is treated in particular detail, as this is a difficult situation to handle and yet a very common one in many structures. It is essential to obtain a good model for the behavior of the structure in order to pursue various applications of experimental modal analysis (EMA), namely: updating of finite element models, structural modification, subsystem-coupling and calculation of real modes from complex modes, to name a few. This last topic is particularly important for the validation of finite element models, and for this reason, a number of different methods to calculate real modes from complex modes are presented and discussed in this paper.

Findings

In this paper, Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been developed based on frequency domain decomposition (FDD) technique to check the accuracy of the results as obtained from ARTeMiS. It is observed that the frequency domain-based algorithm shows good agreement with the extracted results. Hence the following conclusion may be drawn: among several frequency domain-based algorithms for modal parameter extraction, the FDD technique is more reliable and it shows a very good agreement with the experimental results.

Research limitations/implications

In the case of extraction techniques using measured data in the frequency domain, it is reported that the model using derivatives of modal parameters performed better in many situations. Lack of accurate and repeatable dynamic response measurements on complex structures in a real-life situation is a challenging problem to analyze exact modal parameters.

Practical implications

During the last two decades, there has been a growing interest in the domain of modal analysis. Evolved from a simple technique for troubleshooting, modal analysis has become an established technique to analyze the dynamical behavior of complex mechanical structures. Important examples are found in the automotive (cars, trucks, motorcycles), railway, maritime, aerospace (aircrafts, satellites, space shuttle), civil (bridges, buildings, offshore platforms) and heavy equipment industry.

Social implications

Presently structural health monitoring has become a significantly important issue in the area of structural engineering particularly in the context of safety and future usefulness of a structure. A lot of research is being carried out in this area incorporating the modern sophisticated instrumentations and efficient numerical techniques. The dynamic approach is mostly employed to detect structural damage, due to its inherent advantage of having global and location-independent responses. EMA has been attempted by many researchers in a controlled laboratory environment. However, measuring input excitation force(s) seems to be very expensive and difficult for the health assessment of an existing real-life structure. So Ambient Vibration Analysis is a good alternative to overcome those difficulties associated with the measurement of input excitation force.

Originality/value

Three single bay two storey frame structure has been chosen for the experiment. The frame has been divided into six small elements. An algorithm has been developed to determine the natural frequency of those frame structures of which one is undamaged and the rest two damages in single element and double element, respectively. The experimental results from ARTeMIS and from developed algorithm have been compared to verify the effectiveness of the developed algorithm. Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been programmed in MATLAB based on the FDD technique to check the accuracy of the results as obtained from ARTeMiS. Using singular value decomposition, the power Spectral density function matrix is decomposed using the MATLAB program. It is observed that the frequency domain-based algorithm shows good consistency with the extracted results.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 February 2023

Natalia García-Fernández, Manuel Aenlle, Adrián Álvarez-Vázquez, Miguel Muniz-Calvente and Pelayo Fernández

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Abstract

Purpose

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Design/methodology/approach

Fatigue monitoring requires a fatigue model of the material, the stresses at specific points of the structure, a cycle counting technique and a fatigue damage criterion. Firstly, this paper reviews existing structural health monitoring (SHM) techniques, addresses their principal classifications and presents the main characteristics of each technique, with a particular emphasis on modal-based methodologies. Automated modal analysis, damage detection and localisation techniques are also reviewed. Fatigue monitoring is an SHM technique which evaluate the structural fatigue damage in real time. Stress estimation techniques and damage accumulation models based on the S-N field and the Miner rule are also reviewed in this paper.

Findings

A vast amount of research has been carried out in the field of SHM. The literature about fatigue calculation, fatigue testing, fatigue modelling and remaining fatigue life is also extensive. However, the number of publications related to monitor the fatigue process is scarce. A methodology to perform real-time structural fatigue monitoring, in both time and frequency domains, is presented.

Originality/value

Fatigue monitoring can be combined (applied simultaneously) with other vibration-based SHM techniques, which might significantly increase the reliability of the monitoring techniques.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 March 2013

Achuthan C. Pankaj, G. Shanthini, M.V. Shivaprasad and M. Manjuprasad

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these…

Abstract

Purpose

Traditional dynamic and flutter analysis demands a detailed finite element model of the aircraft in terms of its mass and stiffness distribution. However, in absence of these details, modal parameters obtained from experimental tests can be used to predict the flutter characteristics of an aircraft. The purpose of this paper is to develop an improved and reliable method to predict the flutter characteristics of an aircraft structure of unknown configuration under an anticipated aerodynamic loading using software such as MSC Nastran and experimental modal parameters (such as mode shapes, natural frequencies and damping) from ground vibration tests.

Design/methodology/approach

A finite element model with nodes representing the test points on the aircraft is created with appropriate boundary constraints. A direct matrix abstraction program has been written for NASTRAN software that carries out a normal modes analysis and replaces the mass normalized eigenvalues and vectors with the experimentally obtained modal parameters. The flutter analysis proceeds with the solution of the flutter equation in the flutter module of NASTRAN.

Findings

The method has been evaluated for a light composite aircraft and its results have been compared with flight flutter tests and the flutter speeds obtained from the finite element model with actual stiffness and mass distributions of the aircraft.

Research limitations/implications

The methodology developed helps in the realistic prediction of flutter characteristics of a structure with known geometric configuration and does not need material properties, mass or stiffness distributions. However, experimental modal parameters of each configuration of the aircraft are required for flutter speed estimation.

Practical implications

The proposed methodology requires experimental modal parameters of each configuration of the aircraft for flutter speed estimation.

Originality/value

The paper shows that an effective method to predict flutter characteristics using modal parameters from ground vibration tests has been developed.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 27 July 2023

Qaiser Uz Zaman Khan, Muhammad Farhan and Ali Raza

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of…

Abstract

Purpose

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.

Design/methodology/approach

Beam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.

Findings

For torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.

Originality/value

Effect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 August 2019

Jafar Ali and Debasish Bandyopadhyay

Condition monitoring (CM) of structures is important from safety consideration. Damage detection techniques, using inverse dynamic approaches, are important tools to improve the…

Abstract

Purpose

Condition monitoring (CM) of structures is important from safety consideration. Damage detection techniques, using inverse dynamic approaches, are important tools to improve the mathematical models for monitoring the condition of structure. Uncertainties in the measured data might lead to unreliable identification of damage in structural system. Experimental validation is crucial for establishing its practical applicability. The measurement of dynamic responses at all degrees of freedom (DOFs) of a structure is also not feasible in practice. In addition the effect of these uncertainties and constraint of limited measurement are required to be studied based on experimental validation. This paper aims to discuss these issues.

Design/methodology/approach

Proposed numerical model based on measured natural frequencies and mode shapes is found suitable for CM of framed structures in the framework of finite element model with limited dynamic responses. The structural properties, namely, axial rigidity and bending rigidity are identified at the element level in the updated models of the system. Damage at the element level is identified by comparing the identified structural parameters of the updated model of the system with those of the undamaged state. Proposed numerical model is suitable for practical problem, as it is able to identify the structural parameters with limited modal data of first few modes, measured at selected DOFs.

Findings

The model is able to identify the structural damage with greater accuracy from the noisy dynamic responses even if the extent of damage is small. Experimental studies, on simple cantilever beams, establish the potential of the proposed methods for its practical implementation.

Research limitations/implications

The greater random noise will lead to unreliable identification of structural parameters as observed. Thus, filtering of noise technique may be required to be adopted prior to consideration of the measured data in the proposed identification approach.

Practical implications

Requirement of higher modal data seems to be difficult in case of real life practical problem. Thus, simulation technique like condensation or SEREP technique may be adopted.

Social implications

Structural health monitoring of infrastructural system is significantly important. CM of those structures from global response with limited measured data seems to be an effective tool to ensure safety and durability of structures.

Originality/value

The modal testing and subsequent extraction of modal data have been carried out at the authors’ laboratory. The numerical code based on inverse dynamic approach has been developed independently with original contribution.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 June 2023

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Design/methodology/approach

This study is carried out using a one-dimensional beam element with three rotational and three translational degrees of freedom based on the finite element method. MATLAB programming is used to perform the free vibration analysis of the rigid pavement.

Findings

Cyclic frequency and their corresponding mode shapes were determined. It has been investigated how cyclic frequency changes as a result of variations in the thickness, span length of pavement, shear modulus, modulus of subgrade, different boundary conditions and element discretization. Thickness of the pavement and span length has greater effect on the cyclic frequency. Maximum increase of 29.7% is found on increasing the thickness, whereas the cyclic frequency decreases by 63.49% on increasing span length of pavement.

Research limitations/implications

The pavement's free vibration is the sole subject of the current investigation. This study limits for the preliminary design phase of rigid pavements, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique, mesh-free technique on reinforced concrete pavements or jointed concrete pavements.

Originality/value

The finite element approach adopted in this paper involves six degrees of freedom for each node. Furthermore, to the best of the authors’ knowledge, no prior study has done seven separate parametric investigations on the modal analysis of rigid pavement resting on two-parameter soil.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 May 2017

Rafael Castro-Triguero, Enrique Garcia-Macias, Erick Saavedra Flores, M.I. Friswell and Rafael Gallego

The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction…

Abstract

Purpose

The purpose of this paper is to capture the actual structural behavior of the longest timber footbridge in Spain by means of a multi-scale model updating approach in conjunction with ambient vibration tests.

Design/methodology/approach

In a first stage, a numerical pre-test analysis of the full bridge is performed, using standard beam-type finite elements with isotropic material properties. This approach offers a first structural model in which optimal sensor placement (OSP) methodologies are applied to improve the system identification process. In particular, the effective independence (EFI) method is used to determine the optimal locations of a set of sensors. Ambient vibration tests are conducted to determine experimentally the modal characteristics of the structure. The identified modal parameters are compared with those values obtained from this preliminary model. To improve the accuracy of the numerical predictions, the material response is modeled by means of a homogenization-based multi-scale computational approach. In a second stage, the structure is modeled by means of three-dimensional solid elements with the above material definition, capturing realistically the full orthotropic mechanical properties of wood. A genetic algorithm (GA) technique is adopted to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.

Findings

An overall good agreement is found between the results of the updated numerical simulations and the corresponding experimental measurements. The longitudinal and transverse Young's moduli, sliding and rolling shear moduli, density and natural frequencies are computed by the present approach. The obtained results reveal the potential predictive capabilities of the present GA/multi-scale/experimental approach to capture accurately the actual behavior of complex materials and structures.

Originality/value

The uniqueness and importance of this structure leads to an intensive study of its structural behavior. Ambient vibration tests are carried out under environmental excitation. Extraction of modal parameters is obtained from output-only experimental data. The EFI methodology is applied for the OSP on a large-scale structure. Information coming from several length scales, from sub-micrometer dimensions to macroscopic scales, is included in the material definition. The strong differences found between the stiffness along the longitudinal and transverse directions of wood lumbers are incorporated in the structural model. A multi-scale model updating approach is carried out by means of a GA technique to calibrate the micromechanical parameters which are either not well-known or susceptible to considerable variations when measured experimentally.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Yong Xie, Pan Liu and Guoping Cai

The purpose of this paper is to present an on-orbit frequency identification method for spacecraft directly using attitude maneuver data. Natural frequency of flexible solar…

Abstract

Purpose

The purpose of this paper is to present an on-orbit frequency identification method for spacecraft directly using attitude maneuver data. Natural frequency of flexible solar arrays plays an important role in attitude control design of spacecraft with solar arrays, and its precision will directly affect the accuracy of attitude maneuver. However, when the flexibility of the solar arrays is large, because of air damping, gravity effect etc., the frequency obtained by ground test shows great error compared with the on-orbit real value. One solution to this problem is to conduct on-orbit identification during which proper identification methods are used to obtain the parameters of interest based on the real on-orbit data of spacecraft.

Design/methodology/approach

The observer/Kalman filter identification and eigensystem realization algorithm are used as identification methods, and the attitude maneuver controller is designed using the rigid-body dynamics method.

Findings

Two conclusions are drawn in this paper according to results of numerical simulations. The first one is that the attitude controller based on the rigid-body dynamics method is effective in attitude maneuver of the spacecraft. The second one is that the on-orbit parameter identification can be directly achieved by using attitude maneuver data of spacecraft without adding additional missions.

Practical implications

Based on the methods proposed in this paper, it is convenient to obtain the natural frequencies of the spacecraft using the data of the attitude maneuver, which may greatly reduce the cost of on-orbit identification test.

Originality/value

The way of obtaining natural frequencies based on attitude maneuver data of spacecraft provides high originality and value for practical application.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 January 2022

Krishanu Ganguly, Saurabh Chandraker and Haraprasad Roy

The purpose of this study is to bring down collective information about various issues encountered in modelling of rotor systems.

Abstract

Purpose

The purpose of this study is to bring down collective information about various issues encountered in modelling of rotor systems.

Design/methodology/approach

The most important and basic part of “rotor dynamics” is the study related to its different modelling techniques which further involves the analysis of shaft for understanding the system potential, competence and reliability. The issues addressed in this study are classified mainly into two parts: the initial part gives out a vast overview of significant problems as well as different techniques applied to encounter modelling of rotor systems, while the latter part of the study describes the post-processing problem that occurs while performing the dynamic analysis.

Findings

The review incorporates the most important research works that have already placed a benchmark right from the beginning as well as the recent works that are still being carried out to further produce better outcomes. The review concludes with the modal analysis of rotor shaft to show the importance of mathematical model through its dynamic behaviour.

Originality/value

A critical literature review on the modelling techniques of rotor shaft systems is provided from earliest to latest along with its real-time application in different research and industrial fields.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2021

Radu Constantin Parpala, Diana Popescu and Cristina Pupaza

The mechanical performances of 3D-printed parts are influenced by the manufacturing variables. Many studies experimentally evaluate the impact of the process parameters on…

Abstract

Purpose

The mechanical performances of 3D-printed parts are influenced by the manufacturing variables. Many studies experimentally evaluate the impact of the process parameters on specimens’ static and dynamic behavior with the aim of tailoring the mechanical response of the prints. However, this experimental approach is hampered by the very large number of parameters, 3D printers and materials, the development of computer simulation models being thus required. In the context, this study aims to fill a gap by experimentally investigating the influence of infill related parameters over the vibrations of 3D-printed specimens, as well as to propose and validate a parametric finite element (FE) model for the prediction of eigenfrequencies.

Design/methodology/approach

A generally applicable FE model is not yet available for the 3D printing technology based on the material extrusion process due to the large number of parameters settings that determine a large variability of outcomes. Hence, the idea of developing numerical simulation models that address sets of parameters and assess their impact on a certain mechanical property. For the natural frequency, the influence of the infill density and infill line width is studied in this paper. An FE script that automates the generation of the model geometry by using the considered set of parameters is developed and run. The results of the modal analysis are compared to the experimental values for validating the script.

Findings

Based on the experimental results, a linear regression between the weight of the part and the first natural frequency is established. The response surfaces indicate that the infill density is the most significant parameter of influence. The weight-frequency function is then used for the prediction of the natural frequency of specimens manufactured with other infill parameters and values, including different infill patterns.

Practical implications

As the malfunctions or mechanical damages can be caused by the resonant vibration of parts during use, this research develops a FE-parameterized model that evaluates and predicts the eigenfrequencies of 2D printed parts to prevent these undesirable events. The targeted functional applications are those in which 3D-printed polymer parts are used, such as drone arms or drone propellers.

Originality/value

This research studies the influence of process parameters on the natural frequency of 3D-printed polylactic acid specimens, a topic scarcely addressed in literature. It also proposes a new approach for the development of parameterized FE models for sets of parameters, instead of a general model, to reduce the time and resources allocated to the experimental tests. Such a model is provided in this paper for evaluating the influence of infill parameters on 3D prints eigenfrequency. The numerical model is validated for other infill settings.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000