Search results

1 – 4 of 4
To view the access options for this content please click here
Article
Publication date: 26 July 2013

Dalibor Petković, Mirna Issa, Nenad D. Pavlović and Lena Zentner

The essence of the conceptual design is getting the innovative projects or ideas to ensure the products with best performance. It has been proved that the theory of…

Abstract

Purpose

The essence of the conceptual design is getting the innovative projects or ideas to ensure the products with best performance. It has been proved that the theory of inventive problem solution (TRIZ) is a systematic methodology for innovation. The purpose of this paper is to illustrate the design of an adaptive robotic gripper as an engineering example to show the significance and approaches of applying TRIZ in getting the creative conceptual design ideas.

Design/methodology/approach

Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shapes and surfaces is a very challenging task. The requirement for new adaptive grippers is the ability to detect and recognize objects in their environments.

Findings

The main aim of this work is to show a systematic methodology for innovation as an effective procedure to enhance the capability of developing innovative products and to overcome the main design problems. The TRIZ method will be utilized in order to eliminate the technical contradictions which appear in the passively adaptive compliant robotic gripper.

Originality/value

The design of an adaptive robotic gripper as an engineering example is illustrated in this paper to show the significance and approaches of applying TRIZ in getting the creative conceptual design ideas.

Details

Assembly Automation, vol. 33 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 29 April 2014

Dalibor Petkovic, Mirna Issa, Nenad D. Pavlovic, Lena Zentner, Md Nor Ridzuan Daud and Shahaboddin Shamshirband

Tactile sensing is the process of determining physical properties and events through contact with objects in the world. The purpose of this paper is to establish a novel…

Abstract

Purpose

Tactile sensing is the process of determining physical properties and events through contact with objects in the world. The purpose of this paper is to establish a novel design of an adaptive neuro-fuzzy inference system (ANFIS) for estimation of contact position of a new tactile sensing structure.

Design/methodology/approach

The major task is to investigate implementations of carbon-black-filled silicone rubber for tactile sensation; the silicone rubber is electrically conductive and its resistance changes by loading or unloading strains.

Findings

The sensor-elements for the tactile sensing structure were made by press-curing from carbon-black-filled silicone rubber. The experimental results can be used as training and checking data for the ANFIS network.

Originality/value

This system is capable to find any change of contact positions and thus indicates state of the current contact location of the tactile sensing structure. The behavior of the use silicone rubber shows strong non-linearity, therefore, the sensor cannot be used for high accurate measurements. The greatest advantage of this sensing material lies in its high elasticity.

To view the access options for this content please click here
Article
Publication date: 1 March 2013

Dalibor Petković, Mirna Issa, Nenad D. Pavlović and Lena Zentner

The purpose of this paper is to propose a new methodological framework within which a compliant robotic joint can be studied.

Abstract

Purpose

The purpose of this paper is to propose a new methodological framework within which a compliant robotic joint can be studied.

Design/methodology/approach

A new method is presented for detecting the direction of the robotic joint rotation when subjected to an external collision force.

Findings

The behaviour of the silicone rubber shows strong non‐linearity, therefore, the sensor‐elements cannot be used for accurate measurements.

Originality/value

A new type of safe robotic mechanisms with an internal measuring system is proposed in this paper.

Details

Industrial Robot: An International Journal, vol. 40 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 22 March 2013

Dalibor Petković, Mirna Issa, Nenad D. Pavlović and Lena Zentner

The aim of this paper is to investigate implementations of carbon‐black filled silicone rubber for tactile sensation.

Abstract

Purpose

The aim of this paper is to investigate implementations of carbon‐black filled silicone rubber for tactile sensation.

Design/methodology/approach

The sensor‐elements for this tactile sensing structure were made by press‐curing from carbon‐black filled silicone rubber.

Findings

The behaviour of the silicone rubber shows strong non‐linearity, therefore, the sensor cannot be used for accurate measurements. The greatest advantage of this material lies in its high elasticity.

Originality/value

A new method for artificial tactile sensing skin for robotic applications.

Details

Sensor Review, vol. 33 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 4 of 4