Search results

1 – 10 of over 16000
Article
Publication date: 30 August 2021

Mohammad Almashaqbeh and Khaled El-Rayes

The objective of this research study is to formulate and develop a novel optimization model that enables planners of modular construction to minimize the total transportation and…

1513

Abstract

Purpose

The objective of this research study is to formulate and develop a novel optimization model that enables planners of modular construction to minimize the total transportation and storage costs of prefabricated modules in modular construction projects.

Design/methodology/approach

The model is developed by identifying relevant decision variables, formulating an objective function capable of minimizing the total transportation and storage costs and modelling relevant constraints. The model is implemented by providing all relevant planner-specified data and performing the model optimization computations using mixed-integer programming to generate the optimal solution.

Findings

A case study of hybrid modular construction of a healthcare facility is used to evaluate the model performance and demonstrate its capabilities in minimizing the total transportation and onsite storage costs of building prefabricated modules.

Research limitations/implications

The model can be most effective in optimizing transportation for prefabricated modules with rectangular shapes and might be less effective for modules with irregular shapes. Further research is needed to consider the shape of onsite storage area and its module arrangement.

Practical implications

The developed model supports construction planners in improving the cost effectiveness of modular construction projects by optimizing the transportation of prefabricated modules from factories to construction sites.

Originality/value

The original contributions of this research is selecting an optimal module truck assignment from a feasible set of trucks, identifying an optimal delivery day of each module as well as its location and orientation on the assigned truck and complying with relevant constraints including the non-overlap of modules on each truck, shipment weight distribution and aerodynamic drag reduction.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 January 2023

Vahid Ghomi, David Gligor, Sina Shokoohyar, Reza Alikhani and Farnaz Ghazi Nezami

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for…

Abstract

Purpose

Collaborative Logistics (CL) and merging operations are crucial strategies for reducing costs and improving service in transportation companies. This study proposes a model for optimizing efficiency in supply chain networks through inbound and outbound Collaborative Logistics implementation among the carriers in centralized, coordinated networks with cross-docking.

Design/methodology/approach

A mixed-integer non-linear programming model is developed to determine the optimal truck-goods assignment while gaining economies of scale through mixing multiple less-than-truckload (LTL) products with different weight-to-volume ratios. Unlike the previous studies that have considered Collaborative Logistics from the cost and profit-sharing perspective, the proposed model seeks to determine an appropriate form of Collaborative Logistics in the VRP.

Findings

This article shows that in a three-echelon supply chain consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. This approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of collaborative logistics among the carriers was discussed. In a three-echelon SC consisting of a set of suppliers, a set of customers and a cross-docking terminal, partial collaboration among the inbound carriers and outbound carriers outperforms no/complete collaboration. Using a combination of experimental analysis and optimization process, it was recommended that managers be cautious that too much (full or complete) or no collaboration can result in SC performance deterioration.

Originality/value

The suggested approach enhances the supply chain efficiency by minimizing the total transportation costs, the total transportation miles and the total number of trucks and maximizing fleet utilization. While addressing the four points, the role of Collaborative Logistics among the carriers was discussed.

Details

The International Journal of Logistics Management, vol. 34 no. 6
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 1 June 2023

Sareh Khazaeli, Mohammad Saeed Jabalameli and Hadi Sahebi

Due to the importance of quality to customers, this study considers criteria of quality and profit and optimizes both in a multi-echelon cold chain of perishable agricultural…

Abstract

Purpose

Due to the importance of quality to customers, this study considers criteria of quality and profit and optimizes both in a multi-echelon cold chain of perishable agricultural products whose quality immediately begins to deteriorate after harvest. The two objectives of the proposed cold chain are to maximize profit and quality. Since postharvest quality loss in the supply chain depends on various decisions and factors, in addition to strategic decisions, the authors consider the temperature setting in refrigerated facilities and transportation vehicles due to the unfixed shelf life of the products which is related to the temperature found by Arrhenius formula.

Design/methodology/approach

The authors use bi-objective mixed-integer nonlinear programming to design a four-echelon supply chain. The authors integrate the supply chain echelons to detect the sources and factors of quality loss. The four echelons include supply, processing, storage and customer. The decisions, including facility location, assigning nodes of each echelon to corresponding nodes from the adjacent echelon, allocation of vehicles to transport the products from farms to wholesalers, processing selection, and temperature setting in refrigerated facilities, are made in an integrated way. Model verification and validation in the case study are done based on three perishable herbal plants.

Findings

The model obtains a 29% profit against a total cost of 71 and 93% of original quality of the crops is maintained, indicating a 7% quality loss. The final quality of 93% is the result of making a US$6m investment in the supply chain, including the procurement of high-quality raw materials; facility establishment; high-speed, high-capacity vehicles; location assignment; processing selection and refrigeration equipment in the storage and transportation systems, helping to maximize both the final quality of the products and the total profit.

Research limitations/implications

The proposed supply chain model should help managers with modeling decisions, especially when it comes to cold chains for agricultural products. The model yields these results – optimal location-allocation decisions for the facilities to minimize distances between the network nodes, which save time and maintain the majority of the products’ original quality; choosing the most appropriate processing method, which reduces the perishability rate; providing high-capacity, high-speed vehicles in the logistics system, which minimizes transportation costs and maximizes the quality; and setting the right temperature in the refrigerated facilities, which mitigates the postharvest decay reaction rate of the products.

Practical implications

Comparison of the results of the present research with those of the traditional chain (obtained through experts) shows that since the designed chain increases the profit as well as the final quality, it has benefits for the main chain stakeholders, which are customers of agricultural products. This study model is expected to have a positive impact on the environment by placing strong emphasis on quality and preventing excessive waste generation and air pollution by imposing a financial penalty on extra demand production.

Social implications

Since profit and quality of the final product are two important factors in all cultures and communities, the proposed supply chain model can be used in any food industry around the world. Applying the proposed model induces growth in local industries and promotes the culture of prioritizing quality in societies.

Originality/value

To the best of the authors’ knowledge, this is the first research on a bi-objective four-echelon (supply, processing, storage and customer) postharvest supply chain for agricultural products including that integrates transportation logistics and considers the deterioration rate of products as a time-dependent variable at different levels of decision-making.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 June 2006

A.C. Caputo, L. Fratocchi and P.M. Pelagagge

This purpose of this paper is to present a methodology for optimally planning long‐haul road transport activities through proper aggregation of customer orders in separate…

4210

Abstract

Purpose

This purpose of this paper is to present a methodology for optimally planning long‐haul road transport activities through proper aggregation of customer orders in separate full‐truckload or less‐than‐truckload shipments in order to minimize total transportation costs.

Design/methodology/approach

The model is applied to a specific Italian multi‐plant firm operating in the plastic film for packaging sector. The method, given the order quantities to be shipped and the location of customers, aggregates shipments in subgroups of compatible orders resorting to a heuristic procedure and successively consolidates them in optimized full truck load and less than truck load shipments resorting to a Genetic Algorithm in order to minimize total shipping costs respecting delivery due dates and proper geographical and truck capacity constraints.

Findings

The paper demonstrates that evolutionary computation techniques may be effective in tactical planning of transportation activities. The model shows that substantial savings on overall transportation cost may be achieved adopting the proposed methodology in a real life scenario.

Research limitations/implications

The main limitation of this optimisation methodology is that an heuristic procedure is utilized instead of an enumerative approach in order to at first aggregate shipments in compatible sets before the optimisation algorithm carries out the assignments of customer orders to separate truckloads. Even if this implies that the solution could be sub‐optimal, it has demonstrated a very satisfactory performance and enables the problem to become manageable in real life settings.

Practical implications

The proposed methodology enables to rapidly choose if a customer order should be shipped via a FTL or a LTL transport and performs the aggregation of different orders in separate shipments in order to minimize total transportation costs. As a consequence, the task of logistics managers is greatly simplified and consistently better performances respect manual planning can be obtained.

Originality/value

The described methodology is original in both the kind of approach adopted to solve the problem of optimising orders shipping in long‐haul direct shipping distribution logistics, and in the solution technique adopted which integrates heuristic algorithm and an original formulation of a GA optimisation problem. Moreover, the methodology solves both the truckload assignment problem and the choice of LTL vs FTL shipment thus representing an useful tool for logistics managers.

Details

Industrial Management & Data Systems, vol. 106 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Book part
Publication date: 11 September 2020

Murtadha Aldoukhi and Surendra M. Gupta

This chapter proposes a multiobjective model to design a Closed Loop Supply Chain (CLSC) network. The first objective is to minimize the total cost of the network, while the…

Abstract

This chapter proposes a multiobjective model to design a Closed Loop Supply Chain (CLSC) network. The first objective is to minimize the total cost of the network, while the second objective is to minimize the carbon emission resulting from production, transportation, and disposal processes using carbon cap and carbon tax regularity policies. In the third objective, we maximize the service level of retailers by using maximum covering location as a measure of service level. To model the proposed problem, a physical programming approach is developed. This work contributes to the literature in designing an optimum CLSC network considering the service level objective and product substitution.

Article
Publication date: 24 February 2022

Dwi Agustina Kurniawati, Asfin Handoko, Rajesh Piplani and Rianna Rosdiahti

This paper aims to optimize the halal product distribution by minimizing the transportation cost while ensuring halal integrity of the product. The problem is considered as a…

Abstract

Purpose

This paper aims to optimize the halal product distribution by minimizing the transportation cost while ensuring halal integrity of the product. The problem is considered as a capacitated vehicle routing problem (CVRP), based on the assumption that two different types of vehicles are used for distribution: vehicles dedicated for halal product distribution and vehicles dedicated for nonhalal products distribution. The problem is modeled as an integer linear program (ILP), termed CVRP-halal and nonhalal products distribution (CVRP-HNPD). It is solved using tabu-search (TS)-based algorithm and is suitable for application to real-life sized halal product distribution.

Design/methodology/approach

Two approaches are used in solving the problem: exact approach (integer-linear program) and approximate approach (TS). First, the problem is modeled as ILP and solved using CPLEX Solver. To solve life-sized problems, a TS-based algorithm is developed and run using MATLAB.

Findings

The experiments on numerical data and life-sized instances validate the proposed model and algorithm and show that cost-minimizing routes for HNPD are developed while ensuring the halal integrity of the products.

Practical implications

The proposed model and algorithm are suitable as decision support tools for managers responsible for distribution of halal products as they facilitate the development of minimum cost distribution routes for halal and nonhalal products while maintaining the integrity of halal products. The model and algorithm provide a low transportation cost strategy at the operational level of halal products distribution while fulfilling the halal logistics requirement.

Originality/value

To the best of the author’s knowledge, this is the first study that specifically deals with the CVRP of halal products distribution by proposing CVRP-HNPD model and TS-CVRP-HNPD algorithm. The proposed model and algorithm ensure the integrity of halal products along the distribution chain, from the warehouse (distribution center) to the retailer, while achieving lowest transportation cost.

Details

Journal of Islamic Marketing, vol. 14 no. 4
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 4 November 2014

Athakorn Kengpol, Sopida Tuammee and Markku Tuominen

The purpose of this paper is to develop a framework for route selection in multimodal transportation which can reduce cost, lead time, risk and CO2 emission in multimodal…

3303

Abstract

Purpose

The purpose of this paper is to develop a framework for route selection in multimodal transportation which can reduce cost, lead time, risk and CO2 emission in multimodal transportation systems.

Design/methodology/approach

This research proposes the development of a framework for route selection in multimodal transportation that includes a six-phase framework to select an optimal multimodal transportation route. The first phase is to collect the data of each route and select the origin and destination. The second phase is to calculate time and cost of each route by using a multimodal transport cost-model. In the third phase, the CO2 emissions are calculated based upon the 2006 guidelines of Intergovernmental Panel on Climate Change. The fourth phase proposes an integrated quantitative risk assessment, analytic hierarchy process (AHP) and data envelopment analysis methodology to evaluate the multimodal transportation risk. The fifth phase is to prioritize criteria by using the AHP which can be used in the objective function. The final phase is to calculate the optimal route by using the zero-one goal programming.

Findings

The aims of the model are to minimize transportation costs, transportation time, risk and CO2 emission.

Practical implications

The approach has been tested on a realistic multimodal transportation service, originating from Bangkok in Thailand to a destination at Da Nang port in Vietnam. The results have shown that the approach can provide guidance in choosing the lowest cost route in accordance with other criteria, and to minimize the CO2 emission effectively.

Originality/value

The contribution of this research lies in the development of a new decision support approach that is flexible and applicable to logistics service providers, in selecting multimodal transportation route under the multi-criteria in term of cost, time, risk and importantly the environmental impact.

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 1 June 2021

Srikant Gupta, Sachin Chaudhary, Prasenjit Chatterjee and Morteza Yazdani

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to…

Abstract

Purpose

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to respond to customers' needs effectively and efficiently. The main concern for logistics is to ensure that the correct product is placed at the right time. This paper introduces a linear model of shipping focused on decision-making, which includes configuration of shipping network, choosing of transport means and transfer of individual customer shipments through a particular transport system.

Design/methodology/approach

In this study, authors try to address the problem of supply chain network (SCN) where the primary goal is to determine the appropriate order allocation of products from different sources to different destinations. They also seek to minimize total transportation cost and inventory cost by simultaneously determining optimal locations, flows and shipment composition. The formulated problem of getting optimal allocation turns out to be a problem of multi-objective programming, and it is solved by using the max-addition fuzzy goal programming approach, for obtaining optimal order allocation of products. Furthermore, the problem demand and supply parameters have been considered random in nature, and the maximum likelihood estimation approach has been used to assess the unknown probabilistic distribution parameters with a specified probability level (SPL).

Findings

A case study has also been applied for examining the effectiveness and applicability of the developed multi-objective model and the proposed solution methods. Results of this study are very relevant for the manufacturing sector in particular, for those facing logistics issues in SCN. It enables researchers and managers to cope with various types of uncertainty and logistics risks associated with SCN.

Research limitations/implications

The principal contribution of the proposed model is the improved modelling of transportation and inventory, which are affected by different characteristics of SCN. To demonstrate computational information of the suggested methods and proposed model, a case illustration of SCN is provided. Also, environmentalism is increasingly becoming a significant global concern. Hence, the concept proposed could be extended to include environmental aspects as an objective function or constraint.

Originality/value

Efficient integration of logistical cost components, such as transportation costs, inventory costs, with mathematical programming models is an important open issue in logistics optimization. This study expands conventional facility location models to incorporate a range of logistic system elements such as transportation cost and different types of inventory cost, in a multi-product, multi-site network. The research is original and is focused on case studies of real life.

1 – 10 of over 16000