Search results

1 – 10 of 34
Article
Publication date: 5 January 2024

Hongqiang Sang, Fang Huang, Wei Lu, Rui Han and Fen Liu

The patient-side manipulator (PSM) achieves high torque capability by combining harmonic servo system with high reduction ratio and low torque motor. However, high reduction ratio…

Abstract

Purpose

The patient-side manipulator (PSM) achieves high torque capability by combining harmonic servo system with high reduction ratio and low torque motor. However, high reduction ratio can increase inertia and decrease compliance of the manipulator. To enhance the backdrivability of the minimally invasive surgical robot, this paper aims to propose a resistance torque compensation algorithm.

Design/methodology/approach

A resistance torque compensation algorithm based on dynamics and Luenberger observer is proposed. The dynamics are established, considering joint flexibility and an improved Stribeck friction model. The dynamic parameters are experimentally identified by using the least squares method. With the advantages of clear structure, simple implementation and fast solution speed, the Luenberger observer is selected to estimate the unmeasured dynamic information of PSM and realize the resistance torque compensation.

Findings

For low-speed surgical robots, the centrifugal force term in the dynamic model can be simplified to reduce computational complexity. Joint flexibility and an improved Stribeck friction model can be considered to improve the accuracy of the dynamic model. Experiment results show that parameter identification and estimated results of the Luenberger observer are accurate. The backdrivability of the PSM is enhanced in ease and smoothness.

Originality/value

This algorithm provides potential application prospects for surgical robots to maintain high torque while remaining compliant. Meanwhile, the enhanced backdrivability of the manipulator helps to improve the safety of the preoperative manual adjustment.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 February 2023

Adam Diamant, Anton Shevchenko, David Johnston and Fayez Quereshy

The authors determine how the scheduling and sequencing of surgeries by surgeons impacts the rate of post-surgical complications and patient length-of-stay in the hospital.

Abstract

Purpose

The authors determine how the scheduling and sequencing of surgeries by surgeons impacts the rate of post-surgical complications and patient length-of-stay in the hospital.

Design/methodology/approach

Leveraging a dataset of 29,169 surgeries performed by 111 surgeons from a large hospital network in Ontario, Canada, the authors perform a matched case-control regression analysis. The empirical findings are contextualized by interviews with surgeons from the authors’ dataset.

Findings

Surgical complications and longer hospital stays are more likely to occur in technically complex surgeries that follow a similarly complex surgery. The increased complication risk and length-of-hospital-stay is not mitigated by scheduling greater slack time between surgeries nor is it isolated to a few problematic surgery types, surgeons, surgical team configurations or temporal factors such as the timing of surgery within an operating day.

Research limitations/implications

There are four major limitations: (1) the inability to access data that reveals the cognition behind the behavior of the task performer and then directly links this behavior to quality outcomes; (2) the authors’ definition of task complexity may be too simplistic; (3) the authors’ analysis is predicated on the fact that surgeons in the study are independent contractors with hospital privileges and are responsible for scheduling the patients they operate on rather than outsourcing this responsibility to a scheduler (i.e. either a software system or an administrative professional); (4) although the empirical strategy attempts to control for confounding factors and selection bias in the estimate of the treatment effects, the authors cannot rule out that an unobserved confounder may be driving the results.

Practical implications

The study demonstrates that the scheduling and sequencing of patients can affect service quality outcomes (i.e. post-surgical complications) and investigates the effect that two operational levers have on performance. In particular, the authors find that introducing additional slack time between surgeries does not reduce the odds of back-to-back complications. This result runs counter to the traditional operations management perspective, which suggests scheduling more slack time between tasks may prevent or mitigate issues as they arise. However, the authors do find evidence suggesting that the risk of back-to-back complications may be reduced when surgical pairings are less complex and when the method involved in performing consecutive surgeries varies. Thus, interspersing procedures of different complexity levels may help to prevent poor quality outcomes.

Originality/value

The authors empirically connect choices made in scheduling work that varies in task complexity and to patient-centric health outcomes. The results have implications for achieving high-quality outcomes in settings where professionals deliver a variety of technically complex services.

Details

International Journal of Operations & Production Management, vol. 43 no. 9
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 4 April 2024

Bassem T. ElHassan and Alya A. Arabi

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow…

Abstract

Purpose

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow deriving maximum benefits from this technology without compromising ethical principles.

Design/methodology/approach

This paper provides a comprehensive overview of AI in medicine, exploring its technical capabilities, practical applications, and ethical implications. Based on our expertise, we offer insights from both technical and practical perspectives.

Findings

The study identifies several advantages of AI in medicine, including its ability to improve diagnostic accuracy, enhance surgical outcomes, and optimize healthcare delivery. However, there are pending ethical issues such as algorithmic bias, lack of transparency, data privacy issues, and the potential for AI to deskill healthcare professionals and erode humanistic values in patient care. Therefore, it is important to address these issues as promptly as possible to make sure that we benefit from the AI’s implementation without causing any serious drawbacks.

Originality/value

This paper gains its value from the combined practical experience of Professor Elhassan gained through his practice at top hospitals worldwide, and the theoretical expertise of Dr. Arabi acquired from international institutes. The shared experiences of the authors provide valuable insights that are beneficial for raising awareness and guiding action in addressing the ethical concerns associated with the integration of artificial intelligence in medicine.

Details

International Journal of Ethics and Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9369

Keywords

Book part
Publication date: 20 November 2023

Surjeet Dalal, Bijeta Seth and Magdalena Radulescu

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave…

Abstract

Customers today expect businesses to cater to their individual needs by tailoring the products they purchase to their own preferences. The term “Industry 5.0” refers to a new wave of manufacturing that aims to meet each customer's unique demands. Even while Industry 4.0 allowed for mass customization, that wasn't good enough before, customers today demand individualized products at scale, and Industry 5.0 is driving the transition from mass customization to mass personalization to meet these demands. It caters to the individual needs of each consumer by meeting their demands. More specialized components for use in medicine are made possible by the widespread customization made possible by Industry 5.0. These individualized parts are included into the medical care of the patient to meet their specific needs and preferences. In the current medical revolution, an enabling technology of Industry 5.0 can produce medical implants, artificial organs, bodily fluids, and transplants with pinpoint accuracy. With the advent of AI-enabled sensors, we now live in a world where data can be swiftly analyzed. Machines may be programmed to make complex choices on the fly. In the medical field, these innovations allow for exact measurement and monitoring of human body variables according to the individual's needs. They aid in monitoring the body's response to training for peak performance. It allows for the digital dissemination of accurate healthcare data networks. In order to collect and exchange relevant patient data, every equipment is online.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Open Access
Article
Publication date: 2 January 2023

Sara Candidori, Serena Graziosi, Paola Russo, Kasra Osouli, Francesco De Gaetano, Alberto Antonio Zanini and Maria Laura Costantino

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade…

2233

Abstract

Purpose

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade devices conceived to stop post-partum haemorrhages (PPHs).

Design/methodology/approach

The phantom 3D model is generated by analysing the main requirements for validating uterine balloon tamponade devices. A modular approach is implemented to guarantee that the phantom allows testing these devices under multiple working conditions. Once finalised the design, the phantom effectiveness is validated experimentally.

Findings

The modular phantom allows performing the required measurements for testing the performance of devices designed to stop PPH.

Social implications

PPH is the leading obstetric cause of maternal death worldwide, mainly in low- and middle-income countries. The proposed phantom could speed up and optimise the design and validation of devices for PPH treatment, reducing the maternal mortality ratio.

Originality/value

To the best of the authors’ knowledge, the 3D-printed phantom represents the first example of a modular, flexible and transparent uterus model. It can be used to validate and perform usability tests of medical devices.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 September 2023

Fei Qi, Dongming Bai, Xiaoming Dou, Heng Zhang, Haishan Pei and Jing Zhu

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the…

Abstract

Purpose

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the robot.

Design/methodology/approach

The kinematics model is derived by the geometric analysis method under the piecewise constant curvature assumption, and the workspace and dexterity of the proposed robot are analyzed to optimize its structure parameters. Moreover, the statics model is established by the principle of virtual work, which is used to analyze the mapping relationship between the bending deformation and the applied forces/torques. To improve the control accuracy of the robot, a model-based controller is put forward.

Findings

Results of the experiments verify the feasibility of the proposed continuum structure and the correctness of the established model and the control method. The force deviation between the theoretical value and the actual value is relatively small, and the mean value of the deviation between the driving forces is only 0.46 N, which verify the established statics model and the controller.

Originality/value

The proposed model and motion controller can realize its accurate bending control with a few deviations, which can be used as the reference for the motion planning and dynamic model of the continuum robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 18 January 2024

Mahendra Gooroochurn and Riaan Stopforth

Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and…

Abstract

Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and productivity for contributing to SDG 8: Decent Work and Economic Growth and SDG 9: Industry, Innovation and Infrastructure. The integration of Industry 4.0 remains a challenge for the developing world, depending on their current status in the industrial revolution journey from its predecessors 1.0, 2.0 and 3.0. This chapter reviews reported findings in literature to highlight how robotics and automated systems can pave the way to implementing and applying the principles of Industry 4.0 for developing countries like Mauritius, where data collection, processing and analysis for decision-making and prediction are key components to be integrated or designed into industrial processes centred heavily on the use of artificial intelligence (AI) and machine learning techniques. Robotics has not yet found its way into the various industrial sectors in Mauritius, although it has been an important driver for Industry 4.0 across the world. The inherent barriers and transformations needed as well as the potential application scenarios are discussed.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 10 October 2023

Shelby Meek and Birton J. Cowden

The purpose of this paper is to begin to explore the strategic priorities of unicorn ventures as pursuers of market disruption. This study approaches this task by drawing on the…

Abstract

Purpose

The purpose of this paper is to begin to explore the strategic priorities of unicorn ventures as pursuers of market disruption. This study approaches this task by drawing on the positive deviance concept for studying outliers with the intent of understanding the strategic priorities of these ventures.

Design/methodology/approach

This is a comparison study of the priorities of 75 unicorn ventures, 37 early-stage ventures and 45 Fortune 500 organizations. The authors use computer-aided text analysis to conduct within-sample and between-sample means comparison tests of 12,487 newswires from 2022.

Findings

Where early-stage ventures emphasize their mission, and Fortune 500 companies emphasize financial results, unicorn ventures, occupy the middle of the spectrum, balancing their priorities between pursuing market disruption and achieving financial results. These high-growth outliers indicate their priorities by using significantly less positive tone, affective and prosocial language, and focusing less on corporate social responsibility initiatives, compared to early-stage ventures (and using more of this language compared to Fortune 500 ventures). An additional finding emphasizes that public Fortune 500 companies focus significantly more on money than their topic of interest.

Originality/value

This work has implications for understanding the strategic priorities of entrepreneurial ventures in different development stages. The results suggest that unicorn ventures actively work to balance their startup mission, which allows them to experience high-growth and achieve market disruption, with the financial demands of venture capital investors. This novel conclusion demonstrates the value of using positively deviant outlier cases, such as unicorn ventures, as a viable sample for studying market disruption.

Details

Journal of Small Business and Enterprise Development, vol. 30 no. 6
Type: Research Article
ISSN: 1462-6004

Keywords

Article
Publication date: 24 August 2023

Yi Deng, Zhiguo Wang, Lin Dong, Yu Lei and Yanling Dong

This systematic review, following preferred reporting items for systematic reviews and meta-analysis guidelines, rigorously investigates the emergent role of virtual reality (VR…

Abstract

Purpose

This systematic review, following preferred reporting items for systematic reviews and meta-analysis guidelines, rigorously investigates the emergent role of virtual reality (VR) technology in human movement training. The purpose of this study is to explore the effectiveness and evolution of VR in enhancing movement training experiences.

Design/methodology/approach

Acknowledging its pivotal role in diverse applications, such as sports and rehabilitation, human movement training is currently experiencing accelerated evolution, facilitated by the proliferation of wearable devices and mobile applications. This review conducted an exhaustive search across five different electronic databases, such as Web of Science, PubMed and ProQuest, resulting in the selection of 69 eligible articles published within the past five years. It also integrates 40 studies into a narrative summary, categorized based on the level of immersion offered by respective VR systems.

Findings

Enhanced immersion in VR potentially augments the effectiveness of movement training by engendering more realistic and captivating experiences for users. The immersive and interactive environments provided by VR technology enable tailored training experiences accompanied by precise, objective feedback. This review highlights the benefits of VR in human movement training and its potential to revolutionize the way training is conducted.

Originality/value

This systematic review contributes significantly to the existing literature by providing a comprehensive examination of the efficacy and evolution of VR in human movement training. By organizing the findings based on the level of immersion offered by VR systems, it provides valuable insights into the importance of immersion in enhancing training outcomes. In addition, this study identifies the need for future research focusing on the impacts of VR on learning and performance, as well as strategies to optimize its effectiveness and improve accessibility.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 34