Search results

11 – 20 of 359
Article
Publication date: 10 April 2007

Shibli R.M. Khan, J. Noorzaei, M.R.A. Kadir, A.M.T. Waleed and M.S. Jaafar

This paper aims to present a research finding that establishes a regression model between ultrasonic pulse velocity (UPV) tests and actual strength of high performance concrete…

1668

Abstract

Purpose

This paper aims to present a research finding that establishes a regression model between ultrasonic pulse velocity (UPV) tests and actual strength of high performance concrete (HPC).

Design/methodology/approach

In this study, a total of 270 cube samples were made from six different mix proportions. The mixes were grouped in two series that consist of nominal maximum aggregate sizes of 10 mm (A10) and 19 mm (A19). Silica fume were used as mineral admixtures at 5 percent, 10 percent and 15 percent of cement in both series. UPV tests were conducted for each of the specimens, followed by destructive strength tests. The tests were carried out for concrete at different ages of between three to 56 days. The destructive test results were used as the true strength of the mixes and the UPV test results were used as strength estimation.

Findings

Concrete strength correlations between UPV and destructive tests were analysed for each mix proportions and in each series. These correlations are presented in the form of regression equations that displays standard error of between ±2.4 to ±5.7 MPa regardless of mix for the concrete in series A10. Similarly, in series A19 concrete, standard errors of between ±3.2 to ±6.7 MPa were found. Strength prediction models using UPV for high performance concrete are proposed. The models have overall correlation coefficients above 0.80 for all the mixes.

Originality/value

There are no standard relationships that had been established for high performance concrete strength with UPV test methods. The proposed relationship can be used for concrete strength estimation that is normally required in building or structural assessment, especially with the present trend of constructing modern structures using high performance concrete.

Details

Structural Survey, vol. 25 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 March 2022

Mudasir Peerzada, Khan Adnan, Basrah Bilal, Riyaz Janees, Bazila Qazi and Naqash Ahmed Javed

The purpose of this paper is to study the effect of nano alumina (Al2O3) on the properties of fresh concrete, hardened concrete and microstructure of concrete incorporated with…

Abstract

Purpose

The purpose of this paper is to study the effect of nano alumina (Al2O3) on the properties of fresh concrete, hardened concrete and microstructure of concrete incorporated with high range water reducer (HRWR). This initiative was taken to improve characteristic properties of concrete using nano alumina because nano alumina can be easily be manufactured from a scrap of industrial aluminum products, so its incorporation in concrete will not only reduce industrial aluminum waste but will also change the morphology of concrete at the microstructural level.

Design/methodology/approach

To accomplish the objectives of the research, four different concrete mixes with the constant water–cement ratio (W/C) and superplasticizer (SP) content 0.4 and 0.6% by weight of cement, respectively, were prepared, whereas nano alumina content was altered by 0.3% and 0.4% by weight of cement. Fresh property of concrete was analyzed by using slump cone test, whereas hardened properties of concrete were analyzed through compression test and flexural strength test. The interaction of nano alumina with concrete composite was evaluated using an X-ray diffraction test.

Findings

It was observed that 0.6% superplasticizer by weight of cement increased workability by 22% but with the addition of 0.3%, nano alumina by weight of cement workability decreased by 31%. Compressive strength increased by 4.88% with the addition of 0.6% superplasticizer but with the addition of 0.3% nano alumina by weight of cement compressive strength increased by 18.60%. Also, flexural strength increased by 1.21% with the addition of 0.6% superplasticizer by weight of cement but with the addition of 0.3% nano alumina by weight of cement flexural strength increased by 8.76%. With the addition of superplasticizer, alite and belite phases remained un-hydrated but with the addition of nano alumina alite phase was hydrated while belite phase was un-hydrated. The size of belite crystals in mixes having nano alumina was less than that of mix having 0.6% superplasticizer. Also with the addition of nano alumina, a calcium aluminum silicate phase was formed which was responsible for the increment of strength in mixes having nano alumina.

Originality/value

Incorporation nano alumina (Al2O3) in concrete will not only reduce industrial aluminum waste but will also reduce CO2 emission. Nano alumina (Al2O3) also changes morphology of concrete at micro structural level.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 1998

Jyoti Lata Pandey and M.K. Banerjee

Concrete forms a major component of the national infrastructure. Corrosion of reinforced steels embedded in concrete has recently received wide attention in R&D programmes…

1582

Abstract

Concrete forms a major component of the national infrastructure. Corrosion of reinforced steels embedded in concrete has recently received wide attention in R&D programmes. Different cases have been reported showing failures of concrete structures which means huge loss. An attempt has been made to identify the different factors affecting the corrosion of embedded steel. Comparative evaluation of different protective schemes use of additives in concrete admixtures and the application of the cathodic protection technique has been discussed.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 24 March 2023

David Oloke and David Heesom

245

Abstract

Details

Journal of Engineering, Design and Technology , vol. 21 no. 2
Type: Research Article
ISSN: 1726-0531

Article
Publication date: 24 October 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Kylyn A. Morales, Dalisa Mars L. Revilleza, Laurence V. Catindig and Marish S. Madlangbayan

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete…

Abstract

Purpose

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete containing CSA can achieve strengths that are comparable to regular concrete. The purpose of the present work is to evaluate the concrete’s durability-related properties to supplement these earlier findings.

Design/methodology/approach

Cylindrical specimens were prepared with a constant water–cement ratio of 0.50 and CSA content ranging from 0% to 50% (at 10% increment) by volume of the total coarse aggregates. The specimens were cured for 28 days and then tested for density, surface hardness, electrical resistivity and water sorptivity. The surface hardness was measured to describe the concrete resistance to surface wearing, while the resistivity and sorptivity were evaluated to describe the material’s resistance to fluid penetration.

Findings

The results showed that the surface hardness of concrete remained on average at 325 Leeb and did not change significantly with CSA addition. The distribution of surface hardness was also similar across all CSA groups, with the interquartile range averaging 59 Leeb. These results suggest that the cement paste and gravel stiffness had a more pronounced influence on the surface hardness than CSA. On the other hand, concrete became lighter by about 9%, had lower resistivity by 80% and had significantly higher initial sorptivity by up to 110%, when 50% of its natural gravel was replaced with CSA. Future work may be done to improve the durability of CSA when used as coarse aggregate.

Originality/value

The present study is the first to show the lack of correlation between CSA content and surface hardness. It would mean that the surface hardness test may not completely capture the porous nature of CSA-added concrete. The paper concludes that without additional treatment prior to mixing, CSA may be limited only to applications where concrete is not in constant contact with water or deleterious substances.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 June 2022

Chandrasekhar Reddy Kamasani and Sateesh Reddy Siddamreddy

Utilising industrial waste, such as fly ash (FA) and bagasse ash (BA), reduces waste management and increases mechanical strength. Concrete is modified with FA and BA in the cool…

Abstract

Purpose

Utilising industrial waste, such as fly ash (FA) and bagasse ash (BA), reduces waste management and increases mechanical strength. Concrete is modified with FA and BA in the cool bonded method of concrete preparation.

Design/methodology/approach

The study used to partially replace cement with BA powder at proportions 0, 5, 10, 15, 20 and 25% and coarse aggregates are replaced with FA aggregates made with FA and cement using a cold-bonded technique at proportions 0–25%. FA aggregates were made at 10:90, 15:85, 20:80 and 25:75 proportions of cement and FA. The FA aggregates at the best proportion 15:85 was selected as a coarse aggregate by conducting tests like specific gravity, crushing value, impact value and water absorption tests.

Findings

The addition of 30% content decreases porosity by 21% and increases strength significantly at 28 days. Microstructure evolution is carried out to identify material behaviour.

Originality/value

Mechanical and durable properties such as flexural strength, tensile strength, water absorption test, acid and alkaline tests are conducted on M50 grade concrete after 3–28 days of curing.

Details

International Journal of Structural Integrity, vol. 13 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 February 2020

Ghasem Pachideh and Majid Gholhaki

With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to…

Abstract

Purpose

With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to investigate the post-heat mechanical characteristics (i.e. compressive, tensile and flexural strength) of cement mortars containing granulated blast-furnace slag (GBFS) and silica fume (SF). In doing so, selected temperatures include 25, 100, 250, 500, 700 and 9000c. Last, the X-ray diffraction test was conducted to study the microstructure of mixtures and subsequently, the results were presented as power-one mathematical relations.

Design/methodology/approach

Totally, 378 specimens were built to conduct flexural, compressive and tensile strength tests. Accordingly, these specimens include cubic and prismatic specimens with dimensions of 5 × 5 × 5 cm and 16 × 4 × 4 cm, respectively, to conduct compressive and flexural strength tests together with briquette specimen used for tensile strength test in which cement was replaced by 7, 14 and 21 per cent of SF and GBFS. To study the effect of temperature, the specimens were heated. In this respect, they were heated with a rate of 5°C/min and exposed to temperatures of 25 (ordinary temperature), 100, 250, 500, 700 and 900°C.

Findings

On the basis of the results, the most profound effect of using GBFS and SF, respectively, takes place in low (up to 250°C) and high (500°C and greater degrees) temperatures. Quantitatively, the compressive, tensile and flexural strengths were enhanced by 73 and 180 per cent, 45 and 100 per cent, 106 and 112 per cent, respectively, in low and high temperatures. In addition, as the temperature elevates, the particles of specimens containing SF and GBFS shrink less in size compared to the reference specimen.

Originality/value

The specimens were cured according to ASTMC192 after 28 days placement in the water basin. First, in compliance with what has been specified by the mix design, the mortar, including pozzolanic materials and superplasticizer, was prepared and then, the sampling procedure was conducted on cubic specimens with dimension of 5 × 5 × 5 mm for compressive strength test, prismatic specimens with dimensions of 16 × 4 × 4 mm for flexural strength test and last, briquette specimens were provided to conduct tensile strength tests (for each temperature and every test, three specimens were built).

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 July 1969

The Secretary of State after consultation with the Ceramics, Glass and Mineral Products Industry Training Board and with organisations and associations of organisations appearing…

Abstract

The Secretary of State after consultation with the Ceramics, Glass and Mineral Products Industry Training Board and with organisations and associations of organisations appearing to be representative respectively of substantial numbers of employers engaging in the activities hereinafter mentioned and of substantial numbers of persons employed in those activities and with a body established for the purpose of carrying on under national ownership an industry in which the said activities are carried on to a substantial extent and in exercise of her powers under section 9 of the Industrial Training Act 1964(a) and of all other powers enabling her in that behalf hereby makes the following Order :—

Details

Managerial Law, vol. 6 no. 4
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 6 August 2018

Mounira Chadli, Mellas Mekki and Bouzidi Mezghiche

Reactive powder concretes (RPCs) are new concretes characterized by a particle diameter not exceeding 600 µm and very high compressive and tensile strengths. This paper aims to…

Abstract

Purpose

Reactive powder concretes (RPCs) are new concretes characterized by a particle diameter not exceeding 600 µm and very high compressive and tensile strengths. This paper aims to the development and study of the physico-mechanical, elastic properties and durability of an ultra-high performance concrete from materials existing on the Algerian market.

Design/methodology/approach

Three mineral additions such as granulated slag, quartz powder and silica fume are incorporated into the cement with 15, 23 and 25 per cent, respectively, in addition to use two different values of steel fiber volume fraction (2 and 2.5 per cent). The results show that the incorporation of 2.5 per cent metal fibers in the formulation of the RPC gives a high compressive strengths of 143.5 MPa at 60 days. The relationship between the relative value and the longitudinal elasto-instantaneous deformations of the RPC to a linear characteristic throughout the relative stress ranges. Also, the modulus of elasticity developed for a fiber-reinforced reactive concrete is greater than that of the unbound fiber.

Findings

Results from the current study concluded that the presence of the mineral additions improves the durability of the concretes compared with that not adjuvanted by mineral additions.

Originality/value

It can be possible to manufacture fiber-reinforced reactive powder concretes (RPCFs) with compressive strength exceeding 140 MPa, with an adequate plasticity, despite the simplicity of means and materials and the incorporation of different percentage of metal fiber on the mechanical strength of concretes and its influence on behavior with respect to aggressive environment were achieved.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

11 – 20 of 359