Search results

1 – 10 of 344
Article
Publication date: 19 December 2019

Huijun Wu

The purpose of this paper is to research the hardened properties of non-dispersible concrete in seawater environment, especially in seawater environment.

Abstract

Purpose

The purpose of this paper is to research the hardened properties of non-dispersible concrete in seawater environment, especially in seawater environment.

Design/methodology/approach

The main approach is according to the experiment.

Findings

The findings of this paper are: first, because of the washing effect of water, the strength of underwater non-dispersible concrete is lower than that of terrestrial concrete. Second, the strength of non-dispersible underwater concrete with silica fume increases remarkably at different ages. Third, underwater non-dispersible concrete does not produce new products when it is formed and cured in seawater.

Originality/value

In this paper, underwater non-dispersible concrete is formed and maintained on land, freshwater and seawater by underwater pouring method. The working performance, mechanical properties and durability of underwater non-dispersible concrete mixtures after hardening are tested.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2019

Eric Asa, Ahmed Shaker Anna and Edmund Baffoe-Twum

This paper aims to discuss the evaluation of the compressive and splitting tensile strength of concrete mixes containing different proportions of up to 20 per cent glass…

Abstract

Purpose

This paper aims to discuss the evaluation of the compressive and splitting tensile strength of concrete mixes containing different proportions of up to 20 per cent glass aggregate. Portions of sand in concretes with and without admixtures were replaced with measurements of glass aggregates.

Design/methodology/approach

“Glascrete” is a term used for concrete in which crushed glass is used as a substitute for all or part of the aggregates. Glass can be recycled many times without changing its properties, making it an ideal material in concrete. Overall, 144 cubes and 144 cylinders of glascretes were prepared with different admixtures and subjected to compressive and splitting tensile strength test.

Findings

A comparison with a 21-day control mix indicated that glass aggregates are replacing sand in concrete ranging from 5 to 20 per cent by volume, resulting in 3.8-10.6 per cent and 3.9-16.4 per cent fall in compressive and tensile strength, respectively. However, the use of mineral admixture improved the properties of the mixes at 3, 7, 14 and 21 days.

Social implications

Cities worldwide are congested, and even those with the best waste-management system would have issues with waste disposal after the year 2030. Consequently, waste management is a current issue for cities all over the world.

Originality/value

This study aims to evaluate the physical properties of mortar mixes that contain different volumes of waste glass as substitutes for fine aggregate with or without additives. Mineral additives are used to improve the mechanical properties of glascrete mixes in addition to its chemical resistance by absorbing the OH ions responsible for the possible alkali-silica reaction (ASR). It also reduces the adverse effects of mix-dimensional stability. Water-reducing admixtures are used to reduce the impact of the ASR by minimizing the amount of moisture in concrete, in effect decreasing the possible expansion of any produced gel. In this research, compressive and splitting tensile strength of concrete mortar containing waste glass of limited substitutions is evaluated.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 June 2022

Sandeep Singh, Shashi Kant Sharma and M. Abdul Akbar

The purpose of this work is to improve the air entrainment capacity of a concrete by using fine mineral admixtures such as fly ash (FA) and silica fume (SF) as cement substitute…

Abstract

Purpose

The purpose of this work is to improve the air entrainment capacity of a concrete by using fine mineral admixtures such as fly ash (FA) and silica fume (SF) as cement substitute, and coal bottom ash (CBA) as fine aggregate substitute. Air entrainment capacity has been studied indirectly as a measure of heat resistance of concrete. Literature has suggested that mineral admixtures improve the air absorption in the paste component of the concrete, on the one hand, whereas they perform pore and grain size refinement, on the other, thereby reducing the air entrainment. CBA, which being porous, creates the possibility of air adsorption by the aggregate component. Therefore, the study finds out whether a double benefit of adding both of these materials will be achieved, or CBA will try to improve the deficiency in the air entrainment created by the mineral admixtures.

Design/methodology/approach

Air-entrained concrete (AEC) mixes were constituted in three groups. First group represents mixes with natural fine aggregates only, and second with 25% fine aggregates substituted by CBA. Progressively, the third group has 50% fine aggregates substituted with CBA. In all the three groups, cement was substituted with FA and SF @ 0%, 20% and 40%, and 0%, 5% and 10%, respectively, thereby creating four binary and four ternary mixes corresponding to each group. Compressive and flexural strength tests were conducted at 28 days on the concrete mixes pre and post high-temperature heat treatment, i.e. 100°C, 200°C and 400°C, respectively. This study also examines the microstructure characteristics of AEC after 14 days of curing via X-ray diffraction. Sorptivity test was also conducted to estimate the capillary and air-entrained voids in concrete.

Findings

It was found that a concrete mix containing 20% FA and 10% SF along with 50% CBA could give similar post-heated strength to a normal (without mineral admixtures) AEC. In AECs where only CBA is present and cement paste is not substituted, both of the pre- and post-heated strengths of concrete reduce. Also, some mixtures containing large amounts of mineral admixtures in concrete with nil CBA show a high reduction in post-heated strength though they show good pre-heated strength. Therefore, mineral admixtures and CBA complement each other in improving the post-heated strength. Air pore structure found from sorptivity test also verifies these results.

Originality/value

AEC is very helpful for insulation of buildings during summer season by absorbing heat waves. AEC containing FA and CBA reduces carbon footprint because of substitution of cement and it also helps to conserve natural resources by the use of CBA in place of fine aggregates.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 September 2006

M. Vishnudevan and K. Thangavel

Admixtures are materials that are added to concrete at some stage in its production to give concrete new properties whether in fluid or plastic conditions. The admixtures used in…

Abstract

Purpose

Admixtures are materials that are added to concrete at some stage in its production to give concrete new properties whether in fluid or plastic conditions. The admixtures used in the construction industry are broadly classified into Mineral and Chemical admixtures. In recent years, the use of mineral and chemical admixtures in producing high performance concrete has increased significantly. The chemical reaction of cement with admixtures differs from material to material. Calcium nitrite based corrosion inhibiting admixtures have gained popularity for protection of reinforced and pre‐stressed concrete structures but calcium nitrite is not commercialized indigenously in India due to manufacturing difficulties. Hence, the objective of the present investigation was to study a novel corrosion inhibiting admixture system and to compare its effectiveness with sodium nitrite.

Design/methodology/approach

Di‐sodium phthalate, sodium orthophosphate and sodium nitrite‐based corrosion inhibiting admixtures were selected for the present investigation. The critical quantities of corrosion inhibiting additives were determined by accelerated laboratory tests. The following types of tests were conducted to evaluate the efficiency of the corrosion inhibiting admixtures: compressive strength of 100 × 100 × 100 mm concrete cubes after 3,7,14 and 28 days of curing, linear polarization resistance measurements, electrochemical impedance spectroscopy measurements, an accelerated 12 V controlled potential test.

Findings

From the above tests, the inhibitor admixtured concrete not only improved in compressive strength but also increased its corrosion resistance properties. Of the inhibitors studied, di‐sodium phthalate showed superior corrosion resistance properties, compared to sodium nitrite.

Originality/value

Di‐sodium phthalate may be considered a better substitute for calcium nitrite‐based corrosion inhibiting admixtures for durable concrete structures. This fulfils the objective of the investigation.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 October 2022

Rachit Sharma

The purpose of this research is to evaluate construction and industrial waste materials in concrete using different additives.

139

Abstract

Purpose

The purpose of this research is to evaluate construction and industrial waste materials in concrete using different additives.

Design/methodology/approach

The experimental study investigated the effect of waste foundry sand (WFS), waste glass (GW) as partial substituent to natural sand and addition of waste glass fibers (GFs) and silica fume (SF) in natural/construction waste aggregate concrete on mechanical properties, durability and microstructure using.

Findings

The results reveal significant strength enhancement on using two admixtures, the maximum increase in compressive strength was obtained on using 20% WFS and 0.75% GF for both natural (75% increment) and construction waste (72% increment) coarse aggregates. Using three admixtures simultaneously, the maximum enhancement in compressive strength was found for (WFS(20%) + GW(10%) + GF(0.75%)) for both natural aggregates (122% increment) and construction waste (114% increment) coarse aggregates as compared to control mix. The 28 days split tensile and flexural strength of natural/construction waste aggregate concrete improve with age appreciably for optimal contents of single, two or three admixtures and the maximum tensile and flexural strength increment was 135 and 97% for mix (WFS(20%) + GW(10%) + GF(0.75%)) with natural aggregates as compared to control mix. The microstructural analysis results indicate improved microstructure upon partial substitution of sand with WFS, GW and SF along with addition of waste GFs.

Originality/value

The use of construction and industrial waste as a substituent to natural aggregate/sand will provide far reaching benefits for the green construction and the environment at large.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 November 2019

Wu Huijun, Zhan Diao and Kaizuo Fan

The purpose of this paper is to focus on the durability of underwater non-dispersible concrete in seawater environment.

Abstract

Purpose

The purpose of this paper is to focus on the durability of underwater non-dispersible concrete in seawater environment.

Design/methodology/approach

In this paper, ten groups of underwater non-dispersible concrete mixtures were designed, and the anti-dispersibility and fluidity of the mixtures were tested.

Findings

The durability test analysis shows that different pouring methods have different effects on the durability of concrete. The durability of concrete poured on land is better than that poured in water. Different mineral admixtures have different effects on the durability of concrete: the frost resistance of the underwater non-dispersible concrete specimens with silica fume is the best; the impermeability and chloride ion permeability of the non-dispersible underwater concrete specimens with waterproofing agent are the best; and the alternation of wetting and drying has adverse effects on the durability indexes of the non-dispersible underwater concrete.

Originality/value

The durability of underwater non-dispersible concrete is tested and the results can be used for reference in engineering practice.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 January 2013

O.R. Batic, J.D. Sota, J.L. Fernández, N. Bellotti and R. Romagnoli

This research aims to study the influence of limestone filler on rebar corrosion.

Abstract

Purpose

This research aims to study the influence of limestone filler on rebar corrosion.

Design/methodology/approach

Mortar samples containing 35% calcareous filler and with a rebar inserted in the axis, were cast. Specimens were cured at the open air and during 28 days in lime water. After curing, they were submerged in two electrolytes (tap water and 3% NaCl) and corrosion parameters (corrosion potential and corrosion current) were monitored over time by d.c. techniques. Simultaneously, electrochemical noise measurements were carried out. After corrosion tests, rebars were pulled out by lateral compression, and their surface observed by scanning electron microscopy.

Findings

In general, carbonate additions impaired mortar protective properties, especially in the presence of chloride and changed the nature of the protective layer on rebars. The curing process did not introduce significant differences except for mortars with a high water cement ratio cured in lime water for which the beneficial effects of the simultaneous presence of carbonate and lime in the pore solution could be appreciated. The role of carbonate additions is to provide carbonate anions to passivate rebars. This passivation process caused corrosion rates not to be so high. Carbonate anions also deposited on oxide spots which were rendered passive but this process was not uniform. Certain areas on the rebar underwent intense carbonation while others showed increased corrosion rates.

Originality/value

There are not many corrosion studies about the influence of limestone filler on rebars corrosion. Particularly, this paper deals with mortars containing high percentages of carbonate additions. Results showed that the presence of this type of admixture changes the structure of the passive layer and, sometimes, may increase corrosion rates.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 October 2020

Zoi G. Ralli and Stavroula J. Pantazopoulou

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term…

Abstract

Purpose

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term stability and physico-mechanical performance of the concretes produced are identified and discussed, with the intent to improve transparency and clarity in the field of geopolymer concrete technologies.

Design/methodology/approach

This state-of-the-art review covers the area of geopolymer concrete, a class of sustainable construction materials that use a variety of alternative powders in lieu of cement for composing concrete, most being a combination of industrial by-products and natural resources rich in specific required minerals. It explores extensively the available essential materials for geopolymer concrete and provides a deeper understanding of its underlying chemical mechanisms.

Findings

This is a state-of-the-art review introducing the essential characteristics of alternative powders used in geopolymer binders and the effectiveness these have on material performance.

Practical implications

With the increase of need for alternative cementitious materials, identifying and understanding the critical material components and the effect they may have on the performance of the resulting mixes in fresh as well as hardened state become a critical requirement to for short- and long-term quality control (e.g. flash setting, efflorescence, etc.).

Originality/value

The topic explored is significant in the field of sustainable concrete technologies where there are several parallel but distinct material technologies being developed, such as geopolymer concrete and alkali-activated concrete. Behavioral aspects and results are not directly transferable between the two fields of cementitious materials development, and these differences are explored and detailed in the present study.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 July 2007

K. Ganesan, K. Rajagopal and K. Thangavel

Utilization of industrial and agricultural waste products as cement replacement materials in concrete technology has been an interesting subject of research for economical…

Abstract

Purpose

Utilization of industrial and agricultural waste products as cement replacement materials in concrete technology has been an interesting subject of research for economical, environmental, and technical reasons. Portland cement incorporating these cement replacement materials improves corrosion resistance of carbon steel. Sugar cane bagasse is considered as waste in sugar mills and dumped in open space or used as fuel for boilers. The main purpose of the study is to investigate corrosion performance of reinforcing carbon steel in bagasse ash (BA) blended cement concrete and compare it with control concrete.

Design/methodology/approach

BA is prepared by burning boiler‐fired ash at a controlled temperature of 650°C for 1 h and cooled. The ash is then ground to a fineness of 46 μm as Pozzolanic material and blended in concrete in various cement replacement levels. The corrosion behaviour of carbon steel in BA blended concretes exposed to alternate dry‐wet cycles in 3.0 percent NaCl solution for 18 months was studied using gravimetric weight loss, linear polarization, and electrochemical impedance measurement techniques. The resistance to chloride ion penetration of BA blended concretes after 28 and 90 days and compressive strength of BA blended concrete cubes after 7, 14, 28, and 90 days curing also was evaluated.

Findings

The experimental results indicated that the corrosion rate of reinforcing steel and chloride penetration were significantly reduced, and compressive strength was increased, with the incorporation of BA up to 20 percent replacement in concrete. It was observed also that a relatively good correlation between linear polarization and impedance measurements with respect to corrosion current values on the reinforcing steel within BA blended concretes.

Originality/value

BA may be considered as a better substitute than other mineral admixtures for durable concrete structures. The study fulfilled the objective of the investigation and contributes to research on corrosion protection of carbon steel in concrete.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 July 2018

Nivin M. Ahmed, Mostafa G. Mohamed, Reham H. Tammam and Mohamed R. Mabrouk

This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica…

Abstract

Purpose

This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed.

Design/methodology/approach

Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments.

Findings

The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture.

Originality/value

Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 344