Search results

1 – 3 of 3
Article
Publication date: 5 February 2018

Milind Shrikant Kirkire, Santosh B. Rane and Surya Prakash Singh

The purpose of this paper is to outline and prioritizes risk sources in medical device development (MDD) process using an integrated “structural equation modeling” (SEM) and fuzzy…

Abstract

Purpose

The purpose of this paper is to outline and prioritizes risk sources in medical device development (MDD) process using an integrated “structural equation modeling” (SEM) and fuzzy “technique for order performance by similarity to ideal solution (TOPSIS)” framework.

Design/methodology/approach

Risk sources which deter MDD process are explored through literature review. Initial structural model is proposed, factor loadings are determined by exploratory factor analysis and model fit is established by confirmatory factor analysis. Further, the sources are ranked using FTOPSIS, and sensitivity analysis is carried to check robustness of results.

Findings

The sources of risks have catastrophic effect on MDD process. The initial SEM model developed based on survey of experts is found reliable and valid which breaks up the risk sources into three categories – internal sources of risks, user-related sources of risks and third-party-related sources of risks. The risk sources are ranked and prioritized based on perspective of experts from the categories using FTOPSIS; unmet user needs/requirements is found as the most important source of risk. Results of sensitivity analysis confirm that the factors are relatively less sensitive to criteria weights confirming reliability of initial solution.

Research limitations/implications

The proposed methodology combines qualitative and quantative approaches, making it little complex and lengthy, but results in dual confirmation.

Practical implications

The outcomes of this research will be of prime use for MDD industries to mitigate risk sources. It will help to increase the success rate of MDD.

Originality/value

Integrated SEM-FTOPSIS provides a unique and effective structural modeling-based decision support tool. The framework can be effectively utilized in other domains, and failure events of medical devices can be potentially controlled by applying risk mitigation measures.

Details

Benchmarking: An International Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 3 February 2020

Milind Shrikant Kirkire, Santosh B. Rane and Gayatri Jayant Abhyankar

The purpose of this paper model and prioritizes barriers to product development in medical device manufacturing industries using an integrated “structural equation modelling”…

Abstract

Purpose

The purpose of this paper model and prioritizes barriers to product development in medical device manufacturing industries using an integrated “structural equation modelling” (SEM) and “fuzzy technique for order performance by similarity to ideal solution” (FTOPSIS) framework.

Design/methodology/approach

Barriers to medical device development (MDD) are adopted from literature. The initial structural model is proposed, exploratory factor analysis and confirmatory factor analysis are used to determine factor loading and model fit, respectively. Further, FTOPSIS is used to rank the barriers and sensitivity analysis is carried to check the robustness of results. The results are discussed in detail and the recommendations to overcome the barriers are presented.

Findings

Barriers analysed and prioritized in this research significantly hinder the MDD. The expert survey is used to develop an initial structural equation model of barriers to MDD, find the reliability and validity of the model. Based on the opinion of the experts, the barriers are divided into three categories – internal, policy and induced barriers. FTOPSIS is applied to rank and prioritize the barriers based on views from these three classes of experts. More reliance on imported devices leading to increased imports (B11) and lack of uniform regulatory standards (B6) are found to have the highest rank together, indicating these to be the most important barriers from the perspective considered here. Sensitivity analysis indicates that the factors are less sensitive to the weights of criteria further confirming the reliability of the initial solution.

Research limitations/implications

The prioritization of barriers may vary based upon experts. Policymakers, existing and new device developers need to give utmost importance to these barriers, which will help to accelerate the indigenous development of medical devices to overcome the present dependence on imports.

Practical implications

This paper demonstrates an integrated structural based modelling and prioritization technique for statistical modelling and prioritization of barriers to MDD. The results and recommendations will help policymakers and manufacturers to increase the indigenous share of medical devices. The integrated methodology can be effectively applied where the need for the combined quantitative and qualitative approach is there.

Originality/value

This paper demonstrates an effective structural based modelling and prioritization technique. It can be effectively applied in various fields, it will help policymakers and manufacturers to increase the indigenous share of medical devices.

Details

Journal of Modelling in Management, vol. 15 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 8 May 2017

Milind Shrikant Kirkire and Santosh B. Rane

Successful device development brings substantial revenues to medical device manufacturing industries. This paper aims to evaluate factors contributing to the success of medical…

Abstract

Purpose

Successful device development brings substantial revenues to medical device manufacturing industries. This paper aims to evaluate factors contributing to the success of medical device development (MDD) using grey DEMATEL (decision-making trial and evaluation laboratory) methodology through an empirical case study.

Design/methodology/approach

The factors are identified through literature review and industry experts’ opinions. Grey-based DEMATEL methodology is used to establish the cause-effect relationship among the factors and develop a structured model. Most significant factors contributing to the success of MDD are identified. An empirical case study of an MDD and manufacturing organisation is presented to demonstrate the use of the grey DEMATEL method. Sensitivity analysis is carried out to check robustness of results.

Findings

The results of applying the grey DEMATEL methodology to evaluate success factors of MDD show that availability of experts and their experience (SF4) is the most prominent cause factor, and active involvement of stakeholders during all stages of MDD (SF3) and complete elicitation of end-user requirements (SF1) are the most prominent effect factors for successful MDD. A sensitivity analysis confirms the reliability of the initial solution.

Practical implications

The findings will greatly help medical device manufacturers to understand the success factors and develop strategies to conduct successful MDD processes.

Originality/value

In the past, few success factors to MDD have been identified by some researchers, but complex inter-relationships among factors are not analysed. Finding direct and indirect effects of these factors on the success of MDD can be a good future research proposition.

Details

Journal of Modelling in Management, vol. 12 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Access

Year

Content type

Article (3)
1 – 3 of 3