Search results

1 – 10 of 18
Article
Publication date: 28 April 2014

Zongduo Wu, Zhi Zong and Lei Sun

– The purpose of this paper is to provide an improved Mie-Grüneisen mixture model to simulate underwater explosion (UNDEX).

399

Abstract

Purpose

The purpose of this paper is to provide an improved Mie-Grüneisen mixture model to simulate underwater explosion (UNDEX).

Design/methodology/approach

By using Mie-Grüneisen equations of state (EOS) to model explosive charge, liquid water and solid structure, the whole fluid field is considered as a multi-phases mixture under Mie-Grüneisen EOS. Then by introducing auxiliary variables in Eulerian model and using mass fraction to establish a diffusion balance, a new improved Mie-Grüneisen mixture model is presented here. For the new reconstructed mixture model, a second order MUSCL scheme with TVD limiter is employed to solve the multi-phase Riemann problem.

Findings

Numerical examples show that the results obtained by Mie-Grüneisen mixture model are quite closed to theoretical and empirical data. The model can be also used in 2-D fluid-structure problem of UNDEX effectively and it is proved that the deformation of structure can be clearly described by mass fraction.

Research limitations/implications

The FVM model based on mass fraction can only describe the motion of compressible material under impact. Material failure or large deformation needs a modification about the EOS or implementations of other models (i.e. FEM model).

Originality/value

An improved non-oscillation Mie-Grüneisen mixture model, which based on mass fraction, is given in the present paper. The present Mie-Grüneisen mixture model provides a simplified and efficient way to simulate UNDEX. The feasibility of this model to simulate the detonation impacts on different mediums, including water and other metal mediums, is tested and verified here. Then the model is applied to the simulation of underwater contact explosion problem. In the simulation, deformation of structure under explosion loads, as well as second shock wave, are studied here.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2011

Yang Gang, Han Xu and Hu De'an

The purpose of this paper is to investigate the formation process of linear‐shaped charge jet using the smoothed particle hydrodynamics (SPH). Different material yield models are…

Abstract

Purpose

The purpose of this paper is to investigate the formation process of linear‐shaped charge jet using the smoothed particle hydrodynamics (SPH). Different material yield models are embed to test the performance of SPH method in the simulation of explosive driven metal liner. The effects of different ignition model to the formation of metal jet have also been studied.

Design/methodology/approach

The SPH method is used with the correction of artificial viscosity and penalty force to simulate the formation process of linear‐shaped charge jet, which includes the process of explosion and interaction between explosive gas and metal liner. The numerical results which got by SPH method are compared with these obtained by mesh‐based method. Different material yield models are implemented in the numerical examples to show the effect of material model to the formation process of metal jet. The single point and two point ignition models are used to study the effect of ignition models to the process of explosion and formation of metal jet.

Findings

Compared with the original mesh‐based method, the SPH method can simulate the physical process of linear‐shaped charge jet naturally, as well as the capturing of explosive wave propagation. The implementation of different material yields models to obtain the same formation tendency of metal jet, but some numerical difference exists. In two‐point ignition model the explosive pressure is superimposed at the location that two detonation waves intersect. Compared with two ignition models, the two point ignition model can form the metal jet faster and get the higher velocity metal jet.

Originality/value

There are a few references that address the application of SPH to simulate shaped charge explosion process. The feasibility of the SPH method to simulate the formation process of linear shaped charged jet is tested and verified in this paper. From the results which compared with mesh‐based method, it is shown that the SPH method has the advantage in tracking the large deformation of material and capturing the explosive wave propagation. The SPH method can be selected as a good alternative to traditional mesh‐based numerical methods in simulating similar explosively driven metal material problems which can be referenced from this paper.

Details

Engineering Computations, vol. 28 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2007

M. Grujicic, B. Pandurangan, U. Zecevic, K.L. Koudela and B.A. Cheeseman

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a…

Abstract

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non‐Armor‐ Piercing (non‐AP) and AP projectiles is investigated using a transient non‐linear dynamics computational analysis. The results obtained confirm experimental findings that the all‐composite armor, while being able to successfully defeat non‐AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic‐to‐composite areal densities which is associated with a maximum ballistic armor performance against AP threats. The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard‐face/air, hard‐face/backing and backing/air interfaces, projectiles’ wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 September 2012

M. Grujicic, A. Arakere, B. Pandurangan, A. Grujicic, A. Littlestone and R. Barsoum

Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of

Abstract

Purpose

Polyurea falls into a category of elastomeric co‐polymers in which, due to the presence of strong hydrogen bonding, the microstructure is of a heterogeneous nature and consists of a compliant/soft matrix and stiff/hard nanometer size hard domains. Recent investigations have shown that the use of polyurea as an external or internal coating/lining had substantially improved ballistic‐penetration resistance of metallic structures. The present work aims to use computational methods and tools in order to assess the shock‐mitigation ability of polyurea when used in the construction of different components (suspension‐pads, internal lining and external coating) of a combat helmet.

Design/methodology/approach

Shock‐mitigation capability of combat helmets has become an important functional requirement as shock‐ingress into the intra‐cranial cavity is known to be one of the main causes of traumatic brain injury (TBI). To assess the shock mitigation capability of polyurea, a combined Eulerian/Lagrangian fluid/solid transient non‐linear dynamics computational analysis of an air/helmet/head core sample is carried out and the temporal evolution of the axial stress and particle velocities (for different polyurea augmented helmet designs) are monitored.

Findings

The results obtained show that improvements in the shock‐mitigation performance of the helmet are obtained only in the case when polyurea is used as a helmet internal lining and that these improvements are relatively small. In addition, polyurea is found to slightly outperform conventional helmet foam, but only under relatively strong (greater than five atm) blastwave peak overpressures.

Originality/value

The present approach studies the effect of internal linings and external coatings on combat helmet blast mitigation performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 November 2011

Mica Grujicic and W.C. Bell

The purpose of this paper is to analyze, computationally, the kinematic response (including large‐scale rotation and deformation, buckling, plastic yielding, failure initiation…

488

Abstract

Purpose

The purpose of this paper is to analyze, computationally, the kinematic response (including large‐scale rotation and deformation, buckling, plastic yielding, failure initiation, fracture and fragmentation) of a pick‐up truck to the detonation of a landmine (shallow‐buried in one of six different soils, i.e. either sand, clay‐laden sand or sandy gravel, each in either dry or water‐saturated conditions, and detonated underneath the vehicle) using ANSYS/Autodyn, a general‐purpose transient non‐linear dynamics analysis software.

Design/methodology/approach

The computational analysis, using ANSYS/Autodyn, a general‐purpose transient non‐linear dynamics analysis software, included the interactions of the gaseous detonation products and the sand ejecta with the vehicle and the transient non‐linear dynamics response of the vehicle.

Findings

The results obtained clearly show the differences in the blast loads resulting from the landmine detonation in dry and saturated sand, as well as the associated kinematic response of the vehicle. It was also found that the low frequency content of the blast loads which can match the whole‐vehicle eigen modes is quite small so that resonance plays a minor role in the kinematic/ballistic response of the vehicle. Furthermore, it was demonstrated that mine blast analytical loading functions which are often used in transient non‐linear dynamic analyses have limited value when used in the analyses of a complete vehicle.

Originality/value

This is the first time that the kinematic response of a pick‐up truck to the detonation of a shallow‐buried landmine (using a full‐scale/complete model) has been analyzed computationally.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 August 2015

Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami and Rohan Galgalikar

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC…

Abstract

Purpose

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question.

Design/methodology/approach

Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials.

Findings

The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed.

Originality/value

To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2006

M. Grujicic, B. Pandurangan and B. A. Cheeseman

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand…

Abstract

A nonlinear‐dynamics transient computational analysis of the explosion phenomena associated with detonation of 100g of C4 high‐energy explosive buried at different depths in sand is carried out using the AUTODYN computer program. The results obtained are compared with the corresponding experimental results obtained in Ref. [1]. To validate the computational procedure and the materials constitutive models used in the present work, a number of detonation‐related phenomena such as the temporal evolutions of the shape and size of the over‐burden sand bubbles and of the detonation‐products gas clouds, the temporal evolutions of the side‐on pressures in the sand and in air, etc. are determined and compared with their experimental counterparts. The results obtained suggest that the agreement between the computational and the experimental results is reasonable at short postdetonation times. At longer post‐detonation times, on the other hand, the agreement is less satisfactory primarily with respect to the size and shape of the sand crater, i.e. with respect to the volume of the sand ejected during explosion. It is argued that the observed discrepancy is, at least partly, the result of an inadequacy of the generic materials constitutive model for the sand which does not explicitly include the important effects of the sand particle size and the particle size distribution, as well as the effects of moisture‐level controlled inter‐particle friction and cohesion. It is further shown that by a relatively small adjustment of the present materials model for sand to include the potential effect of moisture on inter‐particle friction can yield a significantly improved agreement between the computed and the experimentally determined sand crater shapes and sizes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 April 2017

Mica Grujicic, Brian d’Entremont, Jennifer Snipes and S. Ramaswami

A new concept solution for improving blast survivability of the light tactical military vehicles is proposed and critically assessed using computational engineering methods and…

Abstract

Purpose

A new concept solution for improving blast survivability of the light tactical military vehicles is proposed and critically assessed using computational engineering methods and tools.

Design/methodology/approach

The solution is inspired by the principle of operation of the rocket-engine nozzles, in general and the so called “pulse detonation” rocket engines, in particular, and is an extension of the recently introduced so-called “blast chimney” concept (essentially a vertical channel connecting the bottom and the roof and passing through the cabin of a light tactical vehicle). Relative to the blast-chimney concept, the new solution offers benefits since it does not compromise the cabin space or the ability of the vehicle occupants to scout the environment and, is not expected to, degrade the vehicle’s structural durability/reliability. The proposed concept utilizes side vent channels attached to the V-shaped vehicle underbody whose geometry is optimized with respect to the attainment of the maximum downward thrust on the vehicle. In the course of the channel design optimization, analytical and computational analyses of supersonic flow (analogous to the one often used in the case of the pulse detonation engine) are employed.

Findings

The preliminary results obtained reveal the beneficial effects of the side channels in reducing the blast momentum, although the extent of these effects is quite small (2-4 per cent).

Originality/value

To the authors’ knowledge, the present work is the first exploration of the side-vent-channels concept for mitigating the effect of buried-mine explosion on a light tactical vehicle.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2023

Arman Mohseni, Javad Rezapour, Sina Gohari Rad and Reza Rajabiehfard

The process of hydroforming is defined as the formation of parts into the internal mold design using internal pressure. This process can extensively reduce parts and secondary…

56

Abstract

Purpose

The process of hydroforming is defined as the formation of parts into the internal mold design using internal pressure. This process can extensively reduce parts and secondary operations, and adoption to the loading path is one of its most essential points. The purpose of this paper is to address these issues.

Design/methodology/approach

A dynamic loading path was taken into account in the current study, and a drop hammer was employed for this purpose, decreasing the time and requiring less number of systems.

Findings

One of the main observations of this research is that selecting side punches with a smaller central hole radius is proportional to the kinetic energy and the amount of fluid. Moreover, it can be effective in achieving the optimal loading path.

Originality/value

In addition to experiments for numerical analyses, the finite element simulation model was provided via Abaqus software in which the Eulerian–Lagrangian coupling method was utilized for evaluating the tube forming process through repeating the fluid flow formation because of the effect. Moreover, the genetic programming model was efficient for determining the most suitable input parameters regarding prediction for the minimum thickness which examined the efficiency of the process and presented a mathematical relationship.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 July 2019

Xiang Chen and Xiong Zhang

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for simulating the…

Abstract

Purpose

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for simulating the FSI problems is a great challenge owing to the large discrepancy of material properties and inconsistent description of grid motion between the fluid and solid domains. The difficulties will be further increased if there are multiple materials in the fluid region. In these complicated applications, interface reconstruction, multi-material advection and FSI must be all taken into account. This paper aims to present an effective integrated work of multi-material arbitrary Lagrangian Eulerian (MMALE) method, finite element (FE) method and the continuum analogy method to simulate the complex FSI problems involving multi-material flow. The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Design/methodology/approach

MMALE and FE methods are used to simulate fluid and solid regions, respectively. The interfacial nodes of fluid and solid are required to be coincident in the whole simulation so the interacted force can be easily and accurately calculated. To this end, the continuum analogy method is used in the rezoning phase.

Findings

The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Originality/value

To the best of the authors’ knowledge, this is the first time that the ALE method, moment of fluid interface reconstruction method, continuum analogy method and the FE method are combined to solve complicated practical problems.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 18