Search results

1 – 10 of 176
Article
Publication date: 7 November 2016

Galal H. Elgemeie and Doaa M. Masoud

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to…

1268

Abstract

Purpose

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to heat chemical reactions on a laboratory scale. Also, many scientists use microwave technology in the industry. They have turned to microwave synthesis as a frontline methodology for their projects. Microwave and microwave-assisted organic synthesis (MAOS) has emerged as a new “lead” in organic synthesis.

Design/methodology/approach

Using microwave radiation for synthesis and design of fluorescent dyes is of great interest, as it decreases the time required for synthesis and the synthesized dyes can be applied to industrial scale.

Findings

The technique offers many advantages, as it is simple, clean, fast, efficient and economical for the synthesis of a large number of organic compounds. These advantages encourage many chemists to switch from the traditional heating method to microwave-assisted chemistry.

Practical implications

This review highlights applications of microwave chemistry in organic synthesis for fluorescent dyes. Fluorescents are a fairly new and very heavily used class of organics. These materials have many applications, as a penetrant liquid for crack detection, synthetic resins, plastics, printing inks, non-destructive testing and sports ball dyeing.

Originality/value

The aim value of this review is to define the scope and limitation of microwave synthesis procedures for the synthesis of novel fluorescent dyes via a simple and economic way.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Qi Yang, ZhiQiang Feng, RuanBing Zhang, YunPu Wang, DengLe Duan, Qin Wang, XiaoYu Zou and YuHuan Liu

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Abstract

Purpose

This study aims to develop a green, economical and efficient ultrasonic-/microwave assisted extraction (UMAE) process for the extraction of anthocyanins.

Design/methodology/approach

After optimizing the extraction conditions by response surface methodology, three assays including DPPH, ABTS·+, FRAP were applied to analyze the antioxidant activity of the extracted anthocyanins. The stability under different temperatures, reductant concentrations and pHs was also discussed. The components of anthocyanins in blueberry were analyzed by HPLC-QTOF-MS2.

Findings

The optimal extraction parameters were ultrasonic power of 300 W, microwave power of 365.28 W and solid–liquid ratio of 30 (g/mL). The possible structures can be speculated as Delphinidin-3-O-galactoside, Delphinidin, Petunidin, Delphinidin-3-O-glucoside, Petunidin-3-O-glucoside, Cyanidin-3-O-glucoside. The results demonstrated that the UMAE can improve the yield of anthocyanins in shorter extraction time with higher activity.

Originality/value

The present study may provide a promising and feasible route for extracting anthocyanins from blueberries and studying their physicochemical properties, ultimately promoting the utilization of blueberry anthocyanins.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 May 2022

Monisa Yousouf, Syed Zameer Hussain, Varsha Kanojia, Tahiya Qadri, Bazila Naseer, Fouzia Shafi and Abida Jabeen

The purpose of this study was to formulate a complete protein food from lentil flour (LF) and egg powder (EP) through microwave-assisted extrusion technology.

Abstract

Purpose

The purpose of this study was to formulate a complete protein food from lentil flour (LF) and egg powder (EP) through microwave-assisted extrusion technology.

Design/methodology/approach

In the first part of the hybrid technology, the feed proportion and extrusion conditions were optimized through design expert using central composite rotatable design. In the second part of hybrid technology, the optimized protein pellets (PP) obtained were subjected to microwave heating (MH) for 50,100, 150, 200 and 250 s.

Findings

The optimum predicted conditions for development of pellets using extrusion cooking were feed proportion (85% LF and 15% EP), barrel temperature (140°C), screw speed (340 rpm) and feed moisture content (12%). When these pellets were subjected to MH, 150 s of heating time was considered as prudential to induce desirable quality changes in PP. The increase in sectional expansion index, crispness and overall acceptability from 0.637 to 0.659, 4.51 to 6.1 and 3.27 to 3.59 with corresponding decrease in bulk density and breaking strength from 73.33 to 69.75 kg/cm3 and 6.24 to 5.13 N during 150 s of MH indicated that quality characteristics of extruded PPs were improved after MH.

Practical implications

Nowadays, consumers have become more health conscious than ever, and the demand for nutritious snacks has increased many folds. However, the high protein content restricts expansion of snacks, which was overcome by subjecting extruded pellets to MH to produce third generation pellets. Furthermore, the PP has a protein content of 31.62%, which indicates that if an average person consumes 100 g of these snacks, it will suffice 60% of total recommended dietary intake (0.75 g/kg body weight/day). Lentil-based pellets expanded by use of such hybrid technology (microwave-assisted extrusion cooking) can help to provide a feasible, low cost and protein-rich diet for malnourished population besides being a value addition to lentils.

Originality/value

LF in combination with EP was tested for the first time for development of nutrient dense pellets. Moreover, use of microwave-assisted extrusion cooking offers a workable and innovative technique of developing protein-rich pellets with improved physico-chemical and sensory attributes.

Details

Nutrition & Food Science , vol. 53 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 7 March 2008

P. Veronesi, C. Leonelli, G. Poli and A. Casagrande

The paper aims to focus on microwave (2.45 GHz) assisted SHS (MA‐SHS) preparation of NiAl intermetallic coatings on titanium substrates conducted in single mode applicator in…

Abstract

Purpose

The paper aims to focus on microwave (2.45 GHz) assisted SHS (MA‐SHS) preparation of NiAl intermetallic coatings on titanium substrates conducted in single mode applicator in order to promote the formation of a complex Ni‐Al‐Ti interface. This enhances the NiAl coating adhesion to the Ti substrate and presents high hardness, high toughness and the capability of stopping the fracture propagation.

Design/methodology/approach

Numerical modelling, coupling electromagnetic and heat transfer, allowed to demonstrate that the interface cooling rate can be controlled immediately after SHS using microwave heating, benefiting from the possibility of conveying energy to the newly formed intermetallic compounds, despite an adverse temperature gradient which would negatively affect conventional heating techniques, based exclusively on heat transfer. Experimental validation of the modelling results confirmed that by altering the synthesis conditions (load geometry, microwave power, auxiliary microwave absorbers) the thickness of the Ni‐Al‐Ti layer can be controlled.

Findings

The growth of the interface layer can be ascribed to the formation of a liquid phase (ternary eutectic) which progressively consumes NiAl and Ti from the substrate. In case of MA‐SHS, the liquid phase presence can be prolonged during cooling, thus explaining the formation of the thick interface layer.

Practical implications

Microwave selective heating can be used to initiate the SHS without affecting the metallic substrate, which is only heated locally by the reaction products, thus preserving its properties.

Originality/value

Coupling numerical simulation and experimental activity demonstrated that the different microstructures obtained by MA‐SHS are a result of the peculiar temperature profile, favoured by microwave volumetric and selective heating of the reacting powders.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2017

Mohammadreza Johari, Masoud Rajabi and Vahid Mohammadi

The present paper aims to synthesize SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder using a combination of citrate – gel processing and microwave-assisted heating…

227

Abstract

Purpose

The present paper aims to synthesize SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder using a combination of citrate – gel processing and microwave-assisted heating route.

Design/methodology/approach

Microwave-assisted citrate – gel processing of SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder has been carried out by varying the pH and the molar ratio of H3Cit/Al3+ + Sr2+ +Eu2++Dy3+ (f/o). X-ray diffraction analysis showed that the produced powders were nearly pure SrAl2O4 phase, in which the SrAl2O4 host phase has the maximum fraction of green-emitting monoclinic SrAl2O4 phase.

Findings

Spectrophotometer results revealed that two excitation peaks appeared at 238 and 339 nm and an emission peak at 515 nm. The crystallite size of the green-emitting phosphor nano-pigment powder was about 37 nm as determined by Scherrer’s formula. The best conditions for formation of monoclinic SrAl2O4 phase with high purity were achieved at pH of precursor solution equal to 7 and the molar ratio of f/o equal to 3.

Originality/value

The present research work for the first time (to the best of the authors’ knowledge) has used microwave and sol–gel combination techniques to produce green-emitting phosphor nano-pigment powder (without using any other heating system).

Details

Pigment & Resin Technology, vol. 46 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 June 2017

Xue Shouqing and Xue Zhaomin

This paper aims to improve the anti-corrosion of oil transportation pipelines.

Abstract

Purpose

This paper aims to improve the anti-corrosion of oil transportation pipelines.

Design/methodology/approach

The authors provide a simple, efficient and inexpensive one-pot method for the novel thiadiazole derivatives synthesized using 2-substituted [1, 3, 4] thiadiazole, P2O5 and chloroacetic acid as materials by using XH-200A computer microwave solid-liquid phase synthesizer. The results showed that microwave heating can finish the reaction sufficiently in 20 min, and the optimal addition reaction conditions were n([1, 3, 4] thiadiazole):n(chloroacetic acid):P2O5 = 1:1.2:1.3. Under such conditions, the yield of the title products was 54 per cent.

Findings

The structure of the title compounds were all confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Water-based inhibitors corrosion behaviors on the stainless steel (SS) surface in 1 mol/L HCl solution at room temperature were also studied by weight loss methods and polarization curves. The results of the curves showed that an appropriate amount of 2a (40 ppm) can improve the anti-corrosion efficiency, whereas an excessive amount of 2a (e.g. 50 ppm) may not significantly increase the anti-corrosion efficiency.

Originality/value

In view of continuation of our studies, this paper presents microwave-assisted one-pot synthesis of 2-substitued [1, 3, 4] thiadiazole derivatives, and its anti-corrosion performance was tested by weight loss methods and polarization curves.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 August 2023

Pankaj Naharwal, Mahesh Meena, Charul Somani, Neetu Kumari and Dinesh Kumar Yadav

This paper aims to critically review the isolation and chemistry of plant pigments.

65

Abstract

Purpose

This paper aims to critically review the isolation and chemistry of plant pigments.

Design/methodology/approach

A literature survey from 1974 to 2022 was carried out and studied thoroughly. The authors reviewed literature in various areas such as isolation methods and catalytic properties of pigments.

Findings

With vast growing research in the field of catalytic activities of various pigments like chlorophyll, anthocyanin and flavonoids, there is still scope for further research for the pigments such as Lycopene, carotenoids and xanthophyll as there has not been any significant work in this area.

Research limitations/implications

Plant pigments may be used as an ecofriendly catalyst for chemical reactions.

Practical implications

One can get the direction of pigment research.

Social implications

Plant pigments are natural and ecofriendly catalyst which can reduce the pollution.

Originality/value

This is an original work. This paper precisely depicts the advantages as well as disadvantages of the isolation techniques of pigments. This study also presents the chemistry of plant pigments.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 May 2015

G.H. Elgemeie, K.A. Ahmed, E.A. Ahmed, M.H. Helal and D.M. Masoud

The purpose of this paper is to synthesize some novel 2-amino-6,6-dimethyl-9-phenyl-3-(phenyldiazenyl)-6,7-dihydropyrazolo-[5,1-b]quinazolin-8(5H)-one derivatives by…

Abstract

Purpose

The purpose of this paper is to synthesize some novel 2-amino-6,6-dimethyl-9-phenyl-3-(phenyldiazenyl)-6,7-dihydropyrazolo-[5,1-b]quinazolin-8(5H)-one derivatives by multi-component one-pot reaction using a microwave as a new tool for green chemistry.

Design/methodology/approach

An equimolor from arylazopyrazole, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and benzaldehyde derivatives was dissolved in Dimethylformamide (DMF) to be irradiated in a microwave for 15 minutes; after completion of the reaction, as indicated by Thin layer chromatograph (TLC), the reaction mixture was poured into ice water, filtered and then crystallized with an appropriate solvent.

Findings

The structure of the synthesized dyes was established and confirmed for the reaction products on the basis of their elemental analysis and spectral data (MS, IR and 1H-NMR). These prepared dyes were used to print polyester and polyamide fabrics using synthetic thickener in the printing paste for the silk screen technique. The synthesized dyes are superior in terms of yield, purity, color strength and fastness properties and will lead to valuable achievements for commercial production.

Originality/value

An efficient method for synthesis of pyrazoloquinazolinone dyes was designed. The novel procedure features short reaction time, moderate yields and simple workup. The authors studied its application in printing polyester and polyamide fabrics.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 12 April 2022

Subhamoy Dhua, Kshitiz Kumar, Vijay Singh Sharanagat and Prabhat K. Nema

The amount of food wasted every year is 1.3 billion metric tonne (MT), out of which 0.5 billion MT is contributed by the fruits processing industries. The waste includes…

1222

Abstract

Purpose

The amount of food wasted every year is 1.3 billion metric tonne (MT), out of which 0.5 billion MT is contributed by the fruits processing industries. The waste includes by-products such as peels, pomace and seeds and is a good source of bioactive compounds like phenolic compounds, flavonoids, pectin lipids and dietary fibres. Hence, the purpose of the present study is to review the novel extraction techniques used for the extraction of the bio active compounds from food waste for the selection of suitable extraction method.

Design/methodology/approach

Novel extraction techniques such as ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted extraction, supercritical fluid extraction, pulsed electric field extraction and pressurized liquid extraction have emerged to overcome the drawbacks and constraints of conventional extraction techniques. Hence, this study is focussed on novel extraction techniques, their limitations and optimization for the extraction of bioactive compounds from fruit and vegetable waste.

Findings

This study presents a comprehensive review on the novel extraction processes that have been adopted for the extraction of bioactive compounds from food waste. This paper also summarizes bioactive compounds' optimum extraction condition from various food waste using novel extraction techniques.

Research limitations/implications

Food waste is rich in bioactive compounds, and its efficient extraction may add value to the food processing industries. Hence, compressive analysis is needed to overcome the problem associated with the extraction and selection of suitable extraction techniques.

Social implications

Selection of a suitable extraction method will not only add value to food waste but also reduce waste dumping and the cost of bioactive compounds.

Originality/value

This paper presents the research progress on the extraction of bioactive active compounds from food waste using novel extraction techniques.

Details

Nutrition & Food Science , vol. 52 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 27 September 2011

Sven Berg, Ulf Jungmar, Jan Lundberg and Pekka Vähäoja

The aim of this study is to determine the variation of the different oil analysis instruments in terms of standard deviation and CV‐values, when measuring samples of fully…

Abstract

Purpose

The aim of this study is to determine the variation of the different oil analysis instruments in terms of standard deviation and CV‐values, when measuring samples of fully formulated hydraulic and gear oils taken from working systems.

Design/methodology/approach

In this investigation, two different spectrometric techniques, inductively coupled plasma‐optical emission spectrometers (ICP‐OES) and rotating disk electrode‐optical emission spectrometers (RDE‐OES), have been studied to determine the instruments' precision of measurement and ability to measure the absolute level of contamination. The study was based on a series of measurements using artificial contamination mixed with oil.

Findings

The ICP has better precision of measurement of the two instruments, but cannot predict the absolute values of contamination when oil samples are only treated by organic solvent dilution if the samples include large or dense particles. It is therefore not too good, with the sample pre‐treatment method used, at detecting wear processes that produce dense/large particles, such as pitting failure. For instance, microwave‐assisted acid digestion could be used for sample pre‐treating to obtain accurate results in that case. It should, however, be able to detect wear mechanisms that produce small particles such as abrasive wear in any case. The ICP has a repeatability value of r=3 percent and a reproducibility value of R=12 percent for contamination levels of between 50 and 400 ppm and r=0.6  and R=2 ppm, respectively, at values below 50 ppm. The RDE cannot predict the absolute value of contamination if this includes large or dense particles if proper sample pre‐treatment is not used. It is therefore not good at detecting wear mechanisms that produces dense/large particles (if the oil samples are not pre‐treated properly) such as pitting but should be able to detect abrasive wear and similar processes that produce small particles in any case. The RDE's precision of measurement is not as good as the ICP, with a reproducibility variation of R=r=25 percent for contamination levels between 20 and 500 ppm and R=r=6 ppm for contamination level below 20 ppm.

Research limitations/implications

Only the effects from lubricating oils are studied.

Practical implications

This study will significantly increase the industrial knowledge concerning measurement precision in particle contamination measurement systems.

Originality/value

No similar study is found.

Details

Industrial Lubrication and Tribology, vol. 63 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 176