Search results

1 – 10 of over 1000
Article
Publication date: 29 January 2020

Saurabh Dewangan, Sarmistha Behera and Mukesh Kr. Chowrasia

The purpose of this study is to critically analyze the properties of quenched and tempered steel samples. Austenite to martensite transformation of steel is a common process in…

Abstract

Purpose

The purpose of this study is to critically analyze the properties of quenched and tempered steel samples. Austenite to martensite transformation of steel is a common process in any steel industry. Water quenching is the best suited technique to convert the steel into martensitic structure. Although quenched products are very hard, yet they possess brittleness. Due to which, their industrial applications become very limited. To avoid this problem, tempering of the martensite is usually done to achieve the required combination of hardness and toughness.

Design/methodology/approach

The present work deals with comparative analysis of mechanical properties and microstructural behavior of quenched and tempered steel samples. For the purpose, a low carbon steel (0.2%-C) was taken under study. Quenching was done in water, and tempering was done in atmospheric air. Four different mechanical properties such as tensile strength, toughness, hardness and shear strength were analyzed on steel samples that underwent through two different above-mentioned heat treatment processes.

Findings

An improvement in all the four mechanical properties was reported after tempering the quenched products. Also, the microstructural images of quenched and tempered specimens showed a good corroboration with mechanical properties.

Originality/value

A significant improvement in mechanical properties was reported in tempered specimens. Also, there was a strong corroboration between mechanical properties and microstructural attributes. A clear view of needle-shaped martensite and lamellar-shaped pearlite was observed in water-quenched and tempered specimens, respectively.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2020

Saurabh Dewangan, Suraj Kumar Mohapatra and Abhishek Sharma

Titanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for…

Abstract

Purpose

Titanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.

Design/methodology/approach

Two pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.

Findings

It was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.

Originality/value

A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.

Details

Grey Systems: Theory and Application, vol. 10 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 2008

P. Sathiya, S. Aravindan and A. Noorul Haq

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the faying…

Abstract

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the faying surfaces (surfaces to be joined) under the application of pressure promotes surface interaction, friction and heat generation which subsequently results in joint formation. Stainless steel is an iron based alloy, contains various combinations of other elements to give desired characteristics, and found a wider range of applications in the areas such as petro‐chemical, fertilizer, automotive, food processing, cryogenic, nuclear and beverage sectors. In order to exploit the complete advantages of stainless steels, suitable joining techniques are highly demanded. The Friction welding is an easily integrated welding method of stainless steel, which considered as non‐weldable through fusion welding. Grain coarsening, creep failure and failure at heat‐affected zone are the major limitations of fusion welding of similar stainless steels. Friction welding eliminates such pitfalls. In the present work an attempt is made to investigate experimentally, the mechanical and metallurgical properties of friction welded joints, namely, austenitic stainless steel (AISI 304) and ferritic stainless steel (AISI 430). Evaluation of the characteristics of welded similar stainless steel joints are carried out through tensile test, hardness measurement and metallurgical investigations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 May 2018

Srinivasan Raghavan, Mui Ling Sharon Nai, Pan Wang, Wai Jack Sin, Tao Li and Jun Wei

The paper presents a wide range of post processing heat treatment cycles performed to Electron Beam Melted (EBM) Ti6Al4V alloy and establishes correlations of heat treat process…

1063

Abstract

Purpose

The paper presents a wide range of post processing heat treatment cycles performed to Electron Beam Melted (EBM) Ti6Al4V alloy and establishes correlations of heat treat process to microstructure and mechanical property (microhardness). The research also identifies the optimal heat treatment to obtain the best microstructure and mechanical properties (hardness and tensile).

Design/methodology/approach

Rectangular bars fabricated using EBM was used to study the different heat treatment cycles. A variety of heat treatments from sub ß-transus, super ß-transus, near ß-transus and solution aircool plus ageing were designed. After the heat treatment process, the samples were analysed for, α lath width, prior ß grain size, microhardness and nanohardness. Tensile tests were done for the heat treated samples showing most refined α lath structure with uniform globular grains.

Findings

A clear correlation was observed between α lath width and the microhardness values. The solution aircooled plus aged samples exhibited the best refinement in α-ß morphology with uniform equiaxed grains. The tensile properties of the solution aircooled plus aged samples were comparable to that of the EBM printed samples and better than ASTMF1472 specifications.

Originality/value

There is hardly any prior work related to post processing heat treatment of EBM built Ti6Al4V other than HIP treatments. The variety of heat treatment cycles and its influence in microstructure and properties, studied in this research, gives a clear understanding on how to tailor final microstructures and select the optimal heat treatment process.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 June 2016

Hardinnawirda Kahar, Zetty Akhtar Abd Malek, Siti Rabiatull Aisha Idris and Mahadzir Ishak

This paper aims to study the effect of aging and cooling rate on the reliability of the solder joint using electroless nickel boron (EN-Boron) as a surface finish in the…

Abstract

Purpose

This paper aims to study the effect of aging and cooling rate on the reliability of the solder joint using electroless nickel boron (EN-Boron) as a surface finish in the electronic packaging area.

Design/methodology/approach

EN-Boron was plated on a Cu substrate through electroless plating method. This process was followed by reflow soldering of Sn–3.0Ag–0.5Cu solder alloy on metallized Cu substrate to form a joining. Then, the specimens were cooled using different cooling mediums such as air (slow cooling) with 15.7 °C/min and water (fast cooling) with 110.5 °C/min. After that, the specimens were subjected to isothermal aging at 150°C for 0, 250 and 1,000 h. Finally, they went through a lap shear test following ASTM D1002. Optical microscope and scanning electron microscopy were used for intermetallic compound (IMC) characterization. The type of IMC formed was confirmed by field emission scanning electron microscope-energy-dispersive X-ray spectroscopy (FESEM-EDX).

Findings

The results showed that the IMC type changed from the combination of Ni3Sn4 and (Ni, Cu)3Sn4 after reflow soldering into fully (Ni, Cu)3Sn4 when aged for 1,000 h. The formation of (Ni, Cu)3Sn4 and Cu3Sn underneath the IMC layer played a role in reducing the shear strength of joining. Overall, water cooling was reported to provide higher shear strength of solder joint compared to air cooling medium.

Originality/value

The shear strength when using EN-Boron as the surface finish is comparable to the surface finish conventionally used.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 May 2019

Victor Sunday Aigbodion, Enyi C.C., Akinlabi E.T., Suleiman I.Y., Ezema I.C. and Mgbemene C.A.

This paper aims to investigate the parametric study of addition of snail shell particles (SSp) and bath temperature on the properties of Zn-ZnO-SSp composites coating.

Abstract

Purpose

This paper aims to investigate the parametric study of addition of snail shell particles (SSp) and bath temperature on the properties of Zn-ZnO-SSp composites coating.

Design/methodology/approach

Bath temperatures of 60°C and 90°C and SSp of 0, 5, 10, 15, 20 and 25g were used in the electrodeposition. The microstructure, electrochemical, wear and hardness values of the coated samples were determined.

Findings

Highest coating thickness of 240 µm, 277 per cent improvement in hardness values, 66.67 per cent improvement of wear rate were obtained at bath temperature of 60oC and 15gSSp addition over that of the uncoated sample. There was improvement in corrosion resistance after composites coating. Maximum improvement in the properties was obtained at bath temperature of 60°C at 15gSSp addition.

Originality/value

It has been established in this work that bath treatment and SSps improved the properties of the developed coating.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2023

Mahyar Khorasani, Ian Gibson, Amir Hossein Ghasemi, Elahe Hadavi and Bernard Rolfe

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing…

1089

Abstract

Purpose

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed.

Design methodology approach

Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes.

Findings

The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants.

Originality value

This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authors’ knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2018

Stefan Prüger, Ashutosh Gandhi and Daniel Balzani

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in…

137

Abstract

Purpose

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in the context of constitutive modeling of microheterogeneous materials requires the choice of a representative volume element (RVE) of the considered microstructure, which may be based on some idealized assumptions and/or on experimental observations. In any case, a realistic microstructure within the RVE is either computationally too expensive or not fully accessible by experimental measurement techniques, which introduces some uncertainty regarding the microstructural features.

Design/methodology/approach

In this paper, a systematical variation of microstructural parameters controlling the morphology of an RVE with an idealized microstructure is conducted and the impact on macroscopic quantities of interest as well as microstructural fields and their statistics is investigated. The study is carried out under macroscopically homogeneous deformation states using the direct micro-macro scale transition approach.

Findings

The variation of microstructural parameters, such as inclusion volume fraction, aspect ratio and orientation of the inclusion with respect to the overall loading, influences the macroscopic behavior, especially the micromechanical fields significantly.

Originality/value

The systematic assessment of the impact of microstructural parameters on both macroscopic quantities and statistics of the micromechanical fields allows for a quantitative comparison of different microstructure morphologies and a reliable identification of microstructural parameters that promote failure initialization in microheterogeneous materials.

1 – 10 of over 1000