Search results

1 – 1 of 1
Article
Publication date: 20 November 2023

Annada Prasad Moharana, Ratnesh Raj and Amit Rai Dixit

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high…

Abstract

Purpose

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high cost of molds restrict their use. This research proposes a three-dimensional (3 D) printing process for GFRPCs that allows low-cost and rapid fabrication of complex composite parts.

Design/methodology/approach

The composite is manufactured using a digital light processing (DLP) based Vat-photopolymerization (VPP) process. For the composites, suitable resin material and glass fabrics are chosen based on their strength, stiffness, and printability. Jacob's working curve characterizes the curing parameters for adequate adhesion between the matrix and fabrics. The tensile and flexural properties were examined using UTM. The fabric distribution and compactness of the cured resin were analyzed in scanning electron microscopy.

Findings

The result showed that the object could print at a glass fabric content of 40 volume%. In DLP-based VPP printing technology, the adequate exposure time was found to be 30 seconds for making a GFRPC. The tensile strength and Young's modulus values were increased by 5.54 and 8.81 times, respectively than non-reinforced cured specimens. The flexural strength and modulus were also effectively increased to 2.8 and 3 times more than the neat specimens. In addition, the process is found to help fabricate the functional component.

Originality/value

The experimental procedure to fabricate GFRPC specimens through DLP-based AM is a spectacular experimental approach.

Access

Year

Last 3 months (1)

Content type

1 – 1 of 1