Search results

1 – 10 of 72
Article
Publication date: 11 August 2022

Yanbo Feng, Xiande Wu, Weidong Chen, Yaen Xie, Taihang Yu and Yong Hao

On-orbit assembly technology is a promising research topic in spaceflight field. For purposes of studying the dynamic performance and reducing weight of an on-orbit assembly…

Abstract

Purpose

On-orbit assembly technology is a promising research topic in spaceflight field. For purposes of studying the dynamic performance and reducing weight of an on-orbit assembly satellite structure frame, this paper aims to propose a structural optimization design method based on natural frequency.

Design/methodology/approach

The dynamic stability of the satellite under working condition depends on the mechanical properties of the structure matrix. A global structural optimization model is established, with the objective of mass minimization and the constraints of given natural frequencies and given structure requirements. The structural optimization and improvement design method is proposed using sequential quadratic programming calculation.

Findings

The optimal result of objective function is effectively obtained, and the best combination of structural geometric parameters is configurated. By analyzing the relationship between the structural variables and optimization parameters, the primary and secondary factors to the mass optimization process of the microsatellite satisfying the dynamic performance requirements are obtained, which improves the effectiveness and accuracy of the system optimization design.

Originality/value

This method can coordinate the relation between satellite vibration stability and weight reduction, which provides an effective way for the optimization design of on-orbit assembly microsatellite. It has reference significance for the similar spacecraft framework structure design.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 August 2020

Ahmad Soleymani and Mehran Nosratollahi

The purpose of this paper is to simulate the thermal performance of fluidic momentum controller (FMC) actuators in two case, with and without thermal distribution system on a…

Abstract

Purpose

The purpose of this paper is to simulate the thermal performance of fluidic momentum controller (FMC) actuators in two case, with and without thermal distribution system on a three-axis configuration of FMC actuators to an orbital period of satellite. The results show the effectiveness of using a storage with FMC actuators.

Design/methodology/approach

One of the challenges during a satellite’s orbital mission is unpredictable external temperature perturbations. This system used as a collaborative thermal subsystem for microsatellite temperature passive control. The operating principles of the system are that each fluid rings are used in a microsatellite surface with pumps to stabilize the satellite. All fluid rings are connected to the satellite thermal distribution system (storage).

Findings

Simulation results show that with using of thermal distribution system, damping of satellite different surfaces temperature is rapidly possible to the event of thermal disturbances.

Practical implications

Numerical simulation is obtained by ANSYS Fluent software and pressure-velocity coupling is SIMPLE method and spatial discretization is second order accurate and first order in time, viscous model is k-e. In this regard, a solver algorithm is also developed.

Originality/value

In space research fields about FMC application as actuators to satellite system design, main goal is to research about role of this system to attitude and determination control system (ADCS) of satellites, and no study is performed on its role to satellite temperature damping. This study is exclusively simulated thermal distribution system (includes a storage and its connections) of a microsatellite equipped with FMC actuators. The idea of using a storage for FMC actuators is the innovative step of this research.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 August 2021

Huayi Li, Qingxian Jia, Rui Ma and Xueqin Chen

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space…

Abstract

Purpose

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space disturbance torques and gyro drifts.

Design/methodology/approach

For the satellite attitude dynamics with Lipschitz constraint, a multi-objective nonlinear unknown input observer (NUIO) is explored to accomplish robust actuator fault isolation based on a synthesis of Hinf techniques and regional pole assignment technique. Subsequently, a novel disturbance-decoupling learning observer (D2LO) is proposed to identify the isolated actuator fault accurately. Additionally, the design of the NUIO and the D2LO are reformulated into convex optimization problems involving linear matrix inequalities (LMIs), which can be readily solved using standard LMI tools.

Findings

The simulation studies on a microsatellite example are performed to prove the effectiveness and applicability of the proposed robust actuator fault isolation and identification methodologies.

Practical implications

This research includes implications for the enhancement of reliability and safety of on-orbit microsatellites.

Originality/value

This study proposes novel NUIO-based robust fault isolation and D2LO-based robust fault identification methodologies for spacecraft ACSs subject to a series of space disturbance torques and gyro drifts.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 May 2021

Qasim Zeeshan, Amer Farhan Rafique, Ali Kamran, Muhammad Ishaq Khan and Abdul Waheed

The capability to predict and evaluate various configurations’ performance during the conceptual design phase using multidisciplinary design analysis and optimization can…

Abstract

Purpose

The capability to predict and evaluate various configurations’ performance during the conceptual design phase using multidisciplinary design analysis and optimization can significantly increase the preliminary design process’s efficiency and reduce design and development costs. This research paper aims to perform multidisciplinary design and optimization for an expendable microsatellite launch vehicle (MSLV) comprising three solid-propellant stages, capable of delivering micro-payloads in the low earth orbit. The methodology’s primary purpose is to increase the conceptual and preliminary design process’s efficiency by reducing both the design and development costs.

Design/methodology/approach

Multidiscipline feasible architecture is applied for the multidisciplinary design and optimization of an expendable MSLV at the conceptual level to accommodate interdisciplinary interactions during the optimization process. The multidisciplinary design and optimization framework developed and implemented in this research effort encompasses coupled analysis disciplines of vehicle geometry, mass calculations, aerodynamics, propulsion and trajectory. Nineteen design variables were selected to optimize expendable MSLV to launch a 100 kg satellite at an altitude of 600 km in the low earth orbit. Modern heuristic optimization methods such as genetic algorithm (GA), particle swarm optimization (PSO) and SA are applied and compared to obtain the optimal configurations. The initial population is created by passing the upper and lower bounds of design variables to the optimizer. The optimizer then searches for the best possible combination of design variables to obtain the objective function while satisfying the constraints.

Findings

All of the applied heuristic methods were able to optimize the design problem. Optimized design variables from these methods lie within the lower and upper bounds. This research successfully achieves the desired altitude and final injection velocity while satisfying all the constraints. In this research effort, multiple runs of heuristic algorithms reduce the fundamental stochastic error.

Research limitations/implications

The use of multiple heuristics optimization methods such as GA, PSO and SA in the conceptual design phase owing to the exclusivity of their search approach provides a unique opportunity for exploration of the feasible design space and helps in obtaining alternative configurations capable of meeting the mission objectives, which is not possible when using any of the single optimization algorithm.

Practical implications

The optimized configurations can be further used as baseline configurations in the microsatellite launch missions’ conceptual and preliminary design phases.

Originality/value

Satellite launch vehicle design and optimization is a complex multidisciplinary problem, and it is dealt with effectively in the multidisciplinary design and optimization domain. It integrates several interlinked disciplines and gives the optimum result that satisfies these disciplines’ requirements. This research effort provides the multidisciplinary design and optimization-based simulation framework to predict and evaluate various expendable satellite launch vehicle configurations’ performance. This framework significantly increases the conceptual and preliminary design process’s efficiency by reducing design and development costs.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Javad Tayebi, Amir Ali Nikkhah and Jafar Roshanian

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are…

Abstract

Purpose

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are selected as controller parameters.

Design/methodology/approach

In the stability mode, linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) control strategies are presented with the gimbal rates as a controller parameters. Instead of developing a control torque to solve the attitude problem, the attitude controller is developed in terms of the control moment gyroscope gimbal angular velocities. Attitude control torques are generated by means of a four SGCMG pyramid cluster.

Findings

Numerical simulation results are provided to show the efficiency of the proposed controllers. Simulation results show that this method could stabilize satellite from initial condition with large angles and with more accuracy in comparison with feedback quaternion and proportional-integral-derivative controllers. These results show the effect of filtering the noisy signal in the LQG controller. LQG in comparison to LQR is more realistic.

Practical implications

The LQR method is more appropriate for the systems that have project models reasonably exact and ideal sensors/actuators. LQG is more realistic, and it can be used when not all of the states are available or when the system presents noises. LQR/LQG controller can be used in the stabilization mode of satellite attitude control.

Originality/value

The originality of this paper is designing a new attitude stabilization system for an agile microsatellite using LQR and LQG controllers.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2001

K. Wallace, P. Brooks, C. Watson, W. Levett, N. Morris, P. Gray, N. Waltham, J. Harrison, A. Phipps and S. Child

This paper discusses the Topsat satellite, currently being built by a partnership between DERA Space, Rutherford Appleton Laboratory, Surrey Satellite Technology Ltd and InfoTerra…

Abstract

This paper discusses the Topsat satellite, currently being built by a partnership between DERA Space, Rutherford Appleton Laboratory, Surrey Satellite Technology Ltd and InfoTerra Ltd (Formerly NRSC). Topsat will have the capability to provide imagery at 25m panchromatic and 5m colour resolution, direct to the user at a mobile ground station, from a 125kg microsatellite in low Earth orbit. Its low‐cost philosophy includes wide use of commercial off‐the‐shelf components and the goal of a one‐year mission life.

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 December 2022

Aleksander Olejnik, Piotr Zalewski, Łukasz Kiszkowiak, Robert Rogólski, Adam Dziubiński, Michał Frant, Maciej Majcher and Łukasz Omen

The purpose of this study was to analyze the possibility of using combat aircraft including decommissioned as a platform for launching and carrying space rockets with satellites…

Abstract

Purpose

The purpose of this study was to analyze the possibility of using combat aircraft including decommissioned as a platform for launching and carrying space rockets with satellites (nano and microsatellites). Thus, an airborne-launcher-to-space-system may be attractive to countries without ground-based space rocket launch sites.

Design/methodology/approach

For considered launch-to-orbit system configurations, simulations of space rocket effects on aerodynamic characteristics were performed using computational fluid dynamics (CFD ANSYS Fluent) methods. In addition, experimental studies were performed in a wind tunnel to verify the numerical simulations. Discrete models of the aircraft structure were developed for analysis using finite element method (FEM). The analysis of simulated structural properties of the models was carried out to test its stiffness and mass characteristics important for solving the static and dynamic problems of the structure. The validation analyses of aircraft models were based on mass distribution estimation and matching the stiffness properties of the individual airframe structural assemblies.

Findings

The results of numerical analyses and tunnel tests indicate that the influence of carrier rockets on the change of aerodynamic and strength characteristics of the airframe is rather negligible. The aircraft can be used as launching platforms for space rockets. Simulations have indicated that the aircraft will successfully perform a mission of taking away and launching a rocket of at least about 1,000 kg total weight with a 10 kg space payload included.

Practical implications

The combat aircraft can be used as launch platforms for space rockets, and the air/rocket set can become the equivalent of responsive space assets for countries with small space budgets.

Originality/value

The work presents original results obtained by the authors during a preliminary design of a low-cost satellite launch system consisting of a carrier aircraft and a space rocket orbiter. The possibility of using decommissioned combat aircraft as air-launch-to-orbit platforms was taken into consideration. In the absence of aircraft design documentation, reverse engineering methods and techniques were used to develop aircraft geometry and airframe strength structure. Use of CFD, FEM and simulation methods to evaluate system capabilities was demonstrated. Numerical results from CFD simulations were finally verified in experimental tests.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 June 2019

Jéromine Dumon, Yannick Bury, Nicolas Gourdain and Laurent Michel

The development of reusable space launchers requires a comprehensive knowledge of transonic flow effects on the launcher structure, such as buffet. Indeed, the mechanical…

Abstract

Purpose

The development of reusable space launchers requires a comprehensive knowledge of transonic flow effects on the launcher structure, such as buffet. Indeed, the mechanical integrity of the launcher can be compromised by shock wave/boundary layer interactions, that induce lateral forces responsible for plunging and pitching moments.

Design/methodology/approach

This paper aims to report numerical and experimental investigations on the aerodynamic and aeroelastic behavior of a diamond airfoil, designed for microsatellite-dedicated launchers, with a particular interest for the fluid/structure interaction during buffeting. Experimental investigations based on Schlieren visualizations are conducted in a transonic wind tunnel and are then compared with numerical predictions based on unsteady Reynolds averaged Navier–Stokes and large eddy simulation (LES) approaches. The effect of buffeting on the structure is finally studied by solving the equation of the dynamics.

Findings

Buffeting is both experimentally and numerically revealed. Experiments highlight 3D oscillations of the shock wave in the manner of a wind-flapping flag. LES computations identify a lambda-shaped shock wave foot width oscillations, which noticeably impact aerodynamic loads. At last, the experiments highlight the chaotic behavior of the shock wave as it shifts from an oscillatory periodic to an erratic 3D flapping state. Fluid structure computations show that the aerodynamic response of the airfoil tends to damp the structural vibrations and to mitigate the effect of buffeting.

Originality/value

While buffeting has been extensively studied for classical supercritical profiles, this study focuses on diamond airfoils. Moreover, a fluid structure computation has been conducted to point out the effect of buffeting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

Joel Quincieu, Chris Robinson, Brent Stucker and Todd Mosher

This paper illustrates an effective application of rapid prototyping (RP) to produce a high definition polymer model of a satellite structure prior to final machining of the…

1841

Abstract

Purpose

This paper illustrates an effective application of rapid prototyping (RP) to produce a high definition polymer model of a satellite structure prior to final machining of the aluminum panels. The benefits when using this type of model in the design and assembly stages of satellite fabrication make clear that RP can and should play an important role in the design and fabrication of small satellite structures.

Design/methodology/approach

Selective laser sintering was utilized to produce a full‐scale model of a novel modular small satellite structure. This model was then used as a tool for quality control, fit check, assembly process verification, mock‐up, and as a model for manufacturing tooling design.

Findings

This case study illustrates that the use of RP to create a model early in the design cycle is beneficial from a cost and time perspective even when applied to a product which will be produced in a quantity of one. In addition, the merits of RP mesh well with modular designs and for applications where assembly and test tooling is required to validate the quality of a product.

Practical implications

This paper illustrates an effective use of RP in the satellite fabrication industry. The benefits described are generally applicable to other complex systems which need design validation early in the design cycle.

Originality/value

There are few examples of the effective application of RP to produce models, but not the final product, of a complex structure in the satellite and other industries where small lot production occurs.

Details

Assembly Automation, vol. 25 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 May 2023

Jie Meng

This paper aims to quantify the quality of peer reviews, evaluate them from different perspectives and develop a model to predict the review quality. In addition, this paper…

Abstract

Purpose

This paper aims to quantify the quality of peer reviews, evaluate them from different perspectives and develop a model to predict the review quality. In addition, this paper investigates effective features to distinguish the reviews' quality. 

Design/methodology/approach

First, a fine-grained data set including peer review data, citations and review conformity scores was constructed. Second, metrics were proposed to evaluate the quality of peer reviews from three aspects. Third, five categories of features were proposed in terms of reviews, submissions and responses using natural language processing (NLP) techniques. Finally, different machine learning models were applied to predict the review quality, and feature analysis was performed to understand effective features.

Findings

The analysis results revealed that reviewers become more conservative and the review quality becomes worse over time in terms of these indicators. Among the three models, random forest model achieves the best performance on all three tasks. Sentiment polarity, review length, response length and readability are important factors that distinguish peer reviews’ quality, which can help meta-reviewers value more worthy reviews when making final decisions.

Originality/value

This study provides a new perspective for assessing review quality. Another originality of the research lies in the proposal of a novelty task that predict review quality. To address this task, a novel model was proposed which incorporated various of feature sets, thereby deepening the understanding of peer reviews.

Details

The Electronic Library , vol. 41 no. 2/3
Type: Research Article
ISSN: 0264-0473

Keywords

1 – 10 of 72