Search results

1 – 5 of 5
Article
Publication date: 9 October 2023

Goutam Kumar Jana, Sumit Bera, Ribhu Maity, Tithi Maity, Arjun Mahato, Shibayan Roy, Hemakesh Mohapatra and Bidhan Chandra Samanta

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel…

Abstract

Purpose

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel components should not compromise the material properties. The purpose of this paper is to demonstrate the use of a synthetic amine functional toluidine acetaldehyde condensate (AFTAC) as a modifier for fiber-reinforced epoxy composites. One of the fiber components was sourced from agricultural byproducts, and glass fiber was used as the fiber component for comparison.

Design/methodology/approach

The AFTAC condensate was synthesized via an acid-catalyzed reaction between o-toluidine and acetaldehyde. To demonstrate its efficacy as a toughening agent for diglycidyl ether bisphenol A resin composites and for the comparison of reinforcing materials of interest, composites were fabricated using a natural fiber (mat stick) and a synthetic glass fiber as the reinforcing material. A matched metal die technique was used to fabricate the composites. Composites were prepared and their mechanical and thermal properties were evaluated.

Findings

The inclusion of AFTAC led to an improvement in the mechanical strengths of these composites without any significant deterioration of the thermal stability. It was also observed that the fracture strengths for mat stick fiber-reinforced composites were lower than that of glass fiber-reinforced composites.

Originality/value

To the best of the authors’ knowledge, the use of the AFTAC modifier as well as incorporation of mat stick fibers in epoxy composites has not been demonstrated previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 March 2023

Arun Kumar, Pulak Mohan Pandey, Sunil Jha and Shib Shankar Banerjee

This paper aims to discuss the successful 3D printing of styrene–ethylene–butylene–styrene (SEBS) block copolymers using solvent-cast 3D printing (SC-3DP) technique.

Abstract

Purpose

This paper aims to discuss the successful 3D printing of styrene–ethylene–butylene–styrene (SEBS) block copolymers using solvent-cast 3D printing (SC-3DP) technique.

Design/methodology/approach

Three different Kraton grade SEBS block copolymers were used to prepare viscous polymer solutions (ink) in three different solvents, namely, toluene, cyclopentane and tetrahydrofuran. Hansen solubility parameters (HSPs) were taken into account to understand the solvent–polymer interactions. Ultraviolet–visible spectroscopy was used to analyze transmittance behavior of different inks. Printability of ink samples was compared in terms of shape retention capability, solvent evaporation and shear viscosity. Dimensional deviations in 3D-printed parts were evaluated in terms of percentage shrinkage. Surface morphology of 3D-printed parts was investigated by scanning electron microscope. In addition, mechanical properties and rheology of the SC-3D-printed SEBS samples were also investigated.

Findings

HSP analysis revealed toluene to be the most suitable solvent for SC-3DP. Cyclopentane showed a strong preferential solubility toward the ethylene–butylene block. Microscopic surface cracks were present on tetrahydrofuran ink-based 3D-printed samples. SC-3D-printed samples exhibited high elongation at break (up to 2,200%) and low tension set (up to 9%).

Practical implications

SC-3DP proves to be an effective fabrication route for complex SEBS parts overcoming the challenges associated with fused deposition modeling.

Originality/value

To the best of authors’ knowledge, this is the first report investigating the effect of different solvents on physicomechanical properties of SC-3D-printed SEBS block copolymer samples.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 March 2024

Abhishek Kumar and Manpreet Manshahia

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the…

Abstract

Purpose

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the current state of academic research in this domain and identify and analyze major sustainable trends in the field.

Design/methodology/approach

This study conducts a thorough examination of research publications sourced from the Scopus database spanning the years 2013–2023 by employing a systematic approach. The research utilizes both descriptive analysis and content analysis to identify trends, notable journals and leading countries in sustainable waterproof breathable fabric development.

Findings

The study reveals a notable increase in studies focusing on sustainable approaches in the development of waterproof breathable fabrics for garments. Descriptive analysis highlights the most prominent journal and leading country in terms of research volume. Content analysis identifies four key trends: minimizing chemical usage, developing easily degradable materials, creating fabrics promoting health and well-being and initiatives to reduce energy consumption.

Research limitations/implications

The main limitation of this research lies in its exclusive reliance on the Scopus database.

Practical implications

The insights derived from this study offer practical guidance for prospective researchers interested in investigating sustainable approaches to developing waterproof breathable fabric for garments. The identified trends provide a foundation for aligning research endeavors with contemporary global perspectives, facilitating the integration of sustainable methodologies into the garment industry.

Originality/value

This systematic literature review contributes original insights by synthesizing current research trends and outlining evolving sustainable practices in the development of waterproof breathable fabrics. The identification of key focus areas adds a novel perspective to existing knowledge.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 September 2023

Aying Zhang, Ziyu Xing and Haibao Lu

The purpose of this paper is to study the mechanochemical effect and self-growth mechanism of double-network (DN) gel and to provide a quasiperiodic model for rubber elasticity.

Abstract

Purpose

The purpose of this paper is to study the mechanochemical effect and self-growth mechanism of double-network (DN) gel and to provide a quasiperiodic model for rubber elasticity.

Design/methodology/approach

The chemical reaction kinetics is used to identify the mechanochemical transition probability of host brittle network and to explore the mechanical behavior of endosymbiont ductile network. A quasiperiodic model is proposed to characterize the cooperative coupling of host–endosymbiont networks using the Penrose tiling of a 2 × 2 matrix. Moreover, a free-energy model is formulated to explore the constitutive stress–strain relationship for the DN gel based on the rubber elasticity theory and Gent model.

Findings

In this study, a quasiperiodic graph model has been developed to describe the cooperative interaction between brittle and ductile networks, which undergo the mechanochemical coupling and mechanical stretching behaviors, respectively. The quasiperiodic Penrose tiling determines the mechanochemistry and self-growth effect of DNs.

Originality/value

It is expected to formulate a quasiperiodic graph model of host–guest interaction between two networks to explore the working principle of mechanical and self-growing behavior in DN hydrogels, undergoing complex mechanochemical effect. The effectiveness of the proposed model is verified using both finite element analysis and experimental results of DN gels reported in literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 5 of 5