Search results

1 – 10 of 19
Article
Publication date: 14 August 2023

Jinyao Zhu, Cong Niu, Jinbao Chen, Chen Wang, Dianfu Liu and Decai Yang

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS…

Abstract

Purpose

The purpose of this study is to describe the proposed alpha solar rotary mechanism (ASRM) and how it is used to accurately modify the solar array of the China Space Station (CSS) in orbit to maintain continuous tracking of the sun to provide power. It also highlights the need to evaluate the performance of the ASRM and predict potential failure modes in various extreme scenarios.

Design/methodology/approach

To evaluate the performance of the ASRM, a dynamic model was created and tested under normal and faulty conditions. In addition, a multidirectional stiffness test was conducted on the prototype to verify the accuracy of the ASRM's dynamic model. The high-precision ASRM model was then used to predict potential failure modes and damaged parts in various extreme scenarios.

Findings

The simulation results were in good agreement with the test results, with a maximum error of less than 8.85%. The high-precision ASRM's model was able to accurately predict potential failure modes and damaged parts in extreme scenarios, demonstrating the effectiveness of the proposed model and simulation evaluation test.

Originality/value

The proposed high-precision ASRM model and simulation evaluation test provide an effective way to evaluate the structural safety and optimize the design of the spacecraft. This information can be used to improve the performance and reliability of the CSS's solar array and ensure continuous power supply to the station.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 January 2024

Biqing Ye, Kebiao Zhang, Qiang Zuo, Li Zhang and Xiaohang Shan

The purpose of this paper is to test and analyze the friction torque of double-row angular contact ball bearings under vacuum or ordinary pressure environment, horizontal or…

63

Abstract

Purpose

The purpose of this paper is to test and analyze the friction torque of double-row angular contact ball bearings under vacuum or ordinary pressure environment, horizontal or upright installation mode, and different rotational speeds, and to provide theoretical bases for the development of aerospace equipment.

Design/methodology/approach

The experiments were carried out to investigate the effects of vacuum or ordinary pressure environment, horizontal or upright installation mode and different rotational speeds on bearing friction torque. To explore the relationship between working conditions and bearing friction torque, firstly, based on the generation source of friction torque, the test principle was determined, a test system was developed and the reliability of data was verified. Secondly, the friction torque of bearing was tested, and the values under various working conditions were obtained. Finally, this paper compared and discussed the test results.

Findings

The test results show that the friction torque value of vacuum environment horizontal installation condition is the largest at different rotational speeds, and the rotational speed has the most significant influence on the friction torque.

Originality/value

The friction torque test system of double-row angular contact ball bearing under vacuum environment was designed and built. The influence rules of vacuum or ordinary pressure environment, horizontal or upright installation mode and different rotational speeds on bearing friction torque were obtained.

Peer review

The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-08-2023-0259

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2023

Kang-Jia Wang, Guo-Dong Wang and Feng Shi

The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the…

Abstract

Purpose

The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the traditional integer-order calculus cannot. The purpose of this paper is to develop a new fractional pulse narrowing nonlinear transmission lines model within the local fractional calculus for the first time and derive a novel method, namely, the direct mapping method, to seek for the nondifferentiable (ND) exact solutions.

Design/methodology/approach

By defining some special functions via the Mittag–Leffler function on the Cantor sets, a novel approach, namely, the direct mapping method is derived via constructing a group of the nonlinear local fractional ordinary differential equations. With the aid of the direct mapping method, four groups of the ND exact solutions are obtained in just one step. The dynamic behaviors of the ND exact solutions on the Cantor sets are also described through the 3D graphical illustration.

Findings

It is found that the proposed method is simple but effective and can construct four sets of the ND exact solutions in just one step. In addition, one of the ND exact solutions becomes the exact solution of the classic pulse narrowing nonlinear transmission lines model for the special case 9 = 1, which strongly proves the correctness and effectiveness of the method. The ideas in the paper can be used to study the other fractal partial differential equations (PDEs) within the local fractional derivative (LFD) arising in electrical and electronic engineering.

Originality/value

The fractional pulse narrowing nonlinear transmission lines model within the LFD is proposed for the first time in this paper. The proposed method in the work can be used to study the other fractal PDEs arising in electrical and electronic engineering. The findings in this work are expected to shed a light on the study of the fractal PDEs arising in electrical and electronic engineering.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 February 2023

Kang-Jia Wang

The purpose of this paper is to derive a new fractal active low-pass filter (LPF) within the local fractional derivative (LFD) calculus on the Cantor set (CS).

Abstract

Purpose

The purpose of this paper is to derive a new fractal active low-pass filter (LPF) within the local fractional derivative (LFD) calculus on the Cantor set (CS).

Design/methodology/approach

To the best of the author’s knowledge, a new fractal active LPF within the LFD on the CS is proposed for the first time in this work. By defining the nondifferentiable (ND) lumped elements on the fractal set, the author successfully extracted its ND transfer function by applying the local fractional Laplace transform. The properties of the ND transfer function on the CS are elaborated in detail.

Findings

The comparative results between the fractal active LPF (for γ = ln2/ln3) and the classic one (for γ = 1) on the amplitude–frequency and phase–frequency characteristics show that the proposed method is correct and effective, and is expected to shed light on the theory study of the fractal electrical systems.

Originality/value

To the best of the author’s knowledge, the fractal active LPF within the LFD calculus on the CS is proposed for the first time in this study. The proposed method can be used to study the other problems in the fractal electrical systems, and is expected to shed a light on the theory study of the fractal electrical systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 February 2023

Artur Abratanski, Rafał Grzejda and Rafał Perz

The purpose of this paper is to describe the new method for optimizing the topology of the control system frame for a canard missile to create its efficient model. Determining the…

120

Abstract

Purpose

The purpose of this paper is to describe the new method for optimizing the topology of the control system frame for a canard missile to create its efficient model. Determining the minimum volume of the part risked losing some of the mechanical interfaces and functionality required of the frame. The proposed method must cope with these requirements and include a validation loop of the improved solution proposed by the software. The processing of the mathematical model to a printable form must take into account manufacturing technologies limitations and appropriate curvature continuities to avoid stress concentrations.

Design/methodology/approach

Real examples from the aerospace industry are presented and the process of determining a prototype is described. The optimization assumed leaving the largest volume of the domain. Strength analyses were performed on both the assembly fasteners and the robust prototype. Once all boundary conditions were validated, topological optimization was performed in the ANSYS environment. The algorithm of the optimization was presented.

Findings

Obtained fatigues showed the vast potential of topology optimization, efficient method of weight reduction in specific situations. It can be considered as an innovative approach to the manufacturing of products with a structure focused on the best possible correlation of weight and strength, for example of a canard rocket.

Originality/value

The paper introduces precise manufacturing technology of the inner frame for the missile’s control system, which ensures sufficient properties of the material, known as EBM.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 February 2024

Nicola Martino, Lorenzo Ardito, Antonio Messeni Petruzzelli and Daniele Rotolo

This paper aims to map the evolution of hydrogen-based technologies (HBTs) by examining the patenting activity associated to these technlogies from 1930 to 2020. In doing so, the…

Abstract

Purpose

This paper aims to map the evolution of hydrogen-based technologies (HBTs) by examining the patenting activity associated to these technlogies from 1930 to 2020. In doing so, the study provides a novel perspective on the development of HBTs and offers implications for managers and policymakers.

Design/methodology/approach

We collected patent data at the level of patent families (PFs). Our sample includes 317,089 PFs related to hydrogen production and 62,496 PFs to hydrogen storage. We examined PF data to delineate the state of the art and major technical advancements of HBTs.

Findings

Our analysis provides evidence of an increasing patenting activity in the area of HBTs, hence suggesting relatively high levels of expectations on the economic potential of these technologies. US and Japan hold the largest proportion of PFs related to HBTs (about 60%), while European applicants hold the highest proportion of highly cited PFs (about 60%). While firms represent the applicant with the highest share of PFs, our analysis reveals that firms holding HBT PFs are primarily from the chemical sector.

Research limitations/implications

While our analysis is limited to examining patent data which capture some aspects of the innovation activity around HBTs (namelly, patented inventions), our study enriches existing literature by performinng a patent analysis on a much larger sample of data when compared to previous studies.

Practical implications

Two main implications emerge from our study. Firstly, there seems to be an urgent need to support the emergence of a dominant design so as to facilitate the consolidation and diffusion of the HBTs, hence the transition to a more sustainable energy production. Secondly, the majority of HBT PFs are held by a small number of countries. This, in turn, suggests opportunities to develop cross-country cooperation (e.g. international agreements, research and technology offices) to support the development and adoption of HBTs globally.

Social implications

Considering the results obtained in this study, from a social point of view, the attention that organizations have paid to hydrogen related technologies is evident. This suggests that the development HBTs can function as a social enabler for a sustianable energy transition.

Originality/value

Extant research has focused on the individual components of the hydrogen chain. As a result, we lack a comprehensive understanding of the progress made in the area of HBTs. To address this gap, this study examined HBTs by focusing on both production and storage technologies since their initial developments, hence adopting an observation period of about 70 years.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Open Access
Article
Publication date: 13 December 2022

Marcelo Colaço, Fabio Bozzoli, Luca Cattani and Luca Pagliarini

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite…

379

Abstract

Purpose

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite interesting experimental results. The CG method, together with the AO, was able to estimate the unknown functions more efficiently than the other techniques presented in this paper. The estimation of local heat transfer coefficients, rather than the global ones, in pulsating heat pipes is a relatively new subject and presenting a robust, efficient and self-regularized inverse tool to estimate it, supported also by some experimental results, is the main purpose of this paper. To also increase the visibility and the general use of the paper to the heat transfer community, the authors include, as supplemental material, all numerical and experimental data used in this paper.

Design/methodology/approach

The approach was established on the solution of the inverse heat conduction problem in the wall by using as starting data the temperature measurements on the outer surface. The procedure is based on the CG method with AO. The here proposed approach was first verified adopting synthetic data and then it was validated with real cases regarding pulsating heat pipes.

Findings

An original fast methodology to estimate local convective heat flux is proposed. The procedure has been validated both numerically and experimentally. The procedure has been compared to other classical methods presenting some peculiar benefits.

Practical implications

The approach is suitable for pulsating heat pipes performance evaluation because these devices present a local heat flux distribution characterized by an important variation both in time and in space as a result of the complex flow patterns that are generated in this type of devices.

Originality/value

The procedure here proposed shows these benefits: it affords a general model of the heat conduction problem that is effortlessly customized for the particular case, it can be applied also to large datasets and it presents reduced computational expense.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 7 June 2022

Manoj Kumar

In this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).

Abstract

Purpose

In this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).

Design/methodology/approach

The proposed method is a combination of Sumudu transform and a semi-analytc technique Daftardar-Gejji and Jafari method (DGJM).

Findings

The author solves various non-trivial examples using the proposed method. Moreover, the author obtained the solutions either in exact form or in a series that converges to a closed-form solution. The proposed method is a very good tool to solve this type of equations.

Originality/value

The present work is original. To the best of the author's knowledge, this work is not done by anyone in the literature.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

1 – 10 of 19