Search results

1 – 5 of 5
Article
Publication date: 18 June 2019

Laura Jasińska, Karol Malecha, Krzysztof Szostak and Piotr Słobodzian

The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of…

Abstract

Purpose

The low-temperature co-fired ceramics (LTCC) microfluidic-microwave devices fabrication requires careful consideration of two main factors: the accuracy of deposition of conductive paths and the modification needed to the standard process of the LTCC technology. Neither of them are well-described in the literature.

Design/methodology/approach

The first part of this paper deals with the individual impact of screen parameters such as aperture, photosensitive emulsion thickness and mounting angle on the precision of the screen-printed conductive paths fabrication. For the quantitative analysis purposes, the design of experiment method with Taguchi orthogonal array and analysis of variance was used. The second part contains the characterization of the complex permittivity measured for different values of LTCC substrates lamination pressure.

Findings

It can be concluded, that the combination of aperture, equal to 24 µm, emulsion thickness 20 µm and mounting angle 22.5° ensures the highest quality of printed conductive metallization. Furthermore, the obtained results indicate, that the modification of the lamination pressure does not affect significantly the dielectric parameters of the LTCC substrates.

Originality/value

This paper shows two aspects of the fabrication of the microfluidic-microwave LTCC devices. First, the resolution of the applied metallization is critical in manufacturing high-frequency structures. The obtained experimental results have shown that optimal screen parameters, in terms of conductive pattern quality, can be found. Second, the received outcomes indicate that the changes in the lamination pressure do not affect significantly the electrical parameters of the substrate. Hence, this effect does not need to be taken into account.

Details

Microelectronics International, vol. 36 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 July 2018

Karol Malecha, Jan Macioszczyk, Piotr Slobodzian and Jacek Sobkow

This paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components…

Abstract

Purpose

This paper aims to focus on the application of low temperature co-fired ceramic (LTCC) technology in the fabrication of a microfluidic module with integrated microwave components. The design, technology and performance of such an LTCC-based module is investigated. The rapid heating of liquid samples on a microliter scale is shown to be possible with the use of microwaves.

Design/methodology/approach

The developed microwave-microfluidic module was fabricated using well-known LTCC technology. The finite element method was used to design the geometry of the microwave circuit. Various numerical simulations for different liquids were performed. Finally, the performance of the real LTCC-based microwave-microfluidic module was examined experimentally.

Findings

LTCC materials and technology can be used in the fabrication of microfluidic modules which use microwaves in the heating of the liquid sample. LTCC technology permits the fabrication of matching circuits with appropriate geometry, whereas microwave power can be used to heat up the liquid samples on a microliter scale.

Research limitations/implications

The main limitation of the presented work is found to be in conjunction with LTCC technology. The dimensions and shape of the deposited conductors (e.g. microstrip line, matching circuit) depend on the screen-printing process. A line with resolution lower than 75 µm with well-defined edges is difficult to obtain. This can have an effect on the high-frequency properties of the LTCC modules.

Practical implications

The presented LTCC-based microfluidic module with integrated microwave circuits provides an opportunity for the further development of various micro-total analysis systems or lab-on-chips in which the rapid heating of liquid samples in low volumes is needed (e.g. miniature real-time polymerase chain reaction thermocycler).

Originality/value

Examples of the application of LTCC technology in the fabrication of microwave circuits and microfluidic systems can be found in the available literature. However, the LTCC-based module which combines microwave and microfluidic components has yet to have been reported. The preliminary work on the design, fabrication and properties of the LTCC microfluidic module with integrated microwave components is presented in this paper.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 19 March 2020

Laura Jasińska, Krzysztof Szostak, Milena Kiliszkiewicz, Piotr Słobodzian and Karol Malecha

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with…

2380

Abstract

Purpose

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with microfluidic channels for sensor applications. Normally, conductive patterns are deposited on an LTCC substrate by means of the screen-printing technique, but in this paper applicability of ink-jet printing in connection with LTCC materials is demonstrated.

Design/methodology/approach

A simple microfluidic LTCC sensor based on the microstrip ring resonator was designed. It was assumed the micro-channel, located under the ring, was filled with a mixture of DI water and ethanol, and the operating frequency of the resonator was tuned to 2.4 GHz. The substrate was fabricated by standard LTCC process, and the pattern of the microstrip ring resonator was deposited over the substrate by means of an ink-jet printer. Performance of the sensor was assessed with the use of various volumetric concentrations of DI water and ethanol. Actual changes in concentration were detected by means of microwave measurements.

Findings

It can be concluded that ink-jet printing is a feasible technique for fast fabrication of micro-strip circuits on LTCC substrates, including microfluidic components. Further research needs to be conducted to improve the reliability, accuracy and performance of this technique.

Originality/value

The literature shows the use of ink-jet printing for producing various conductive patterns in different applications. However, the idea to replace the screen-printing with the ink-jet printing on LTCC substrates in connection with microwave-microfluidic applications is not widely studied. Some questions concerning accuracy and reliability of this technique are still open.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 2 April 2020

Witold Nawrot and Karol Malecha

The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new…

1625

Abstract

Purpose

The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new possibilities.

Design/methodology/approach

A short introduction into additive techniques is included, as well as primary characterization of structuring capabilities, dielectric performance and applicability in the electronic manufacturing process.

Findings

Ceramic stereolithography (SLA) is suitable for microchannel manufacturing, even using a relatively inexpensive system. This method is suitable for implementation into the electronic manufacturing process; however, a search for better materials is desired, especially for improved dielectric parameters, lowered sintering temperature and decreased porosity.

Practical implications

Relatively inexpensive ceramic SLA, which is now available, could make ceramic electronics, currently restricted to specific applications, more available.

Originality/value

Ceramic AM is in the beginning phase of implementation in electronic technology, and only a few reports are currently available, the most significant of which is mentioned in this paper.

Details

Microelectronics International, vol. 37 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 August 2016

Piotr M. Markowski

The purpose of this paper was to develop the methodology of thick-film/low temperature co-fired ceramic (LTCC) multilayer thermoelectric microgenerator fabrication including the…

Abstract

Purpose

The purpose of this paper was to develop the methodology of thick-film/low temperature co-fired ceramic (LTCC) multilayer thermoelectric microgenerator fabrication including the procedure of silver-nickel thermocouples integration with LTCC.

Design/methodology/approach

To miniaturize the structures and to increase the output parameters (generated voltage, electrical power), the microgenerator was designed as multilayer systems. It allows to reduce size of the system and to increase the number of thermocouples integrated inside the structure. It also protects buried thermocouples against exposure to harmful external factors (e.g. moisture, oxidation and mechanical exposures). As a substrate, LTCC was used. For the thermocouples fabrication, thick-film pastes based on silver and nickel were chosen. Ag/Ni thermocouple has nearly three times higher Seebeck coefficient and 30 per cent lower electrical resistance than the combination of Ag/PdAg used in previous works of the author.

Findings

A multi-layer thick-film thermoelectric generator based on LTCC and Ag, Ni pastes was fabricated. Thirty Ag/Ni thermocouples were precisely screen-printed on few layers. Thermocouples’ arms are 15 mm long and about 150 μm wide. Interlayer connections (via-holes filled with conductive paste) provided the electrical contact between the layers. The biggest fabricated harvester consisted of 90 miniature thermocouples buried inside the LTCC.

Originality/value

The paper presents the results of research that provided to optimize the co-firing process of the LTCC/Ni set. In the result, the methodology of co-firing of silver-nickel thermocouples and LTCC ceramic was elaborated. Also, the methodology of fabrication of miniature thermoelectric energy harvesters was optimized.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 5 of 5