Search results

1 – 10 of 76
Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 February 2023

Josué Costa-Baptista, Edith Roland Fotsing, Jacky Mardjono, Daniel Therriault and Annie Ross

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Abstract

Purpose

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Design/methodology/approach

The hybrid materials combine microchannels and helical tubes. Microchannels provide broadband sound absorption in the middle frequency range. Helical tubes provide low-frequency absorption. Optimal configurations of microchannels are used and analytical equations are developed to guide the design of the helical tubes. Nine hybrid materials with 30 mm thickness are produced via additive manufacturing. They are combinations of one-, two- and four-layer microchannels and helical tubes with 110, 151 and 250 mm length. The sound absorption coefficient of the hybrid materials is measured using an impedance tube.

Findings

The type of microchannels (i.e. one, two or four layers), the number of rotations and the number of tubes are key parameters affecting the acoustic performance. For instance, in the 500 Hz octave band (α500), sound absorption of a 30 mm thick hybrid material can reach 0.52 which is 5.7 times higher than the α500 of a typical periodic porous material with the same thickness. Moreover, the broadband sound absorption for mid-frequencies is reasonably high with and α1000 > 0.7. The ratio of first absorption peak wavelength to structure thickness λ/T can reach 17, which is characteristic of deep-subwavelength behaviour.

Originality/value

The concept and experimental validation of a compact hybrid material combining a periodic porous structure such as microchannels and long helical tubes are original. The ability to increase low-frequency sound absorption at constant depth is an asset for applications where volume and weight are constraints.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2023

Saeed Ghorbani, Amin Emamian, Amin Amiri Delouei, R. Ellahi, Sadiq M. Sait and Mohamed Bechir Ben Hamida

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Abstract

Purpose

The purpose of this study is to investigate heat transfer and electrokinetic non-Newtonian flow in a rectangular microchannel in the developed and transient states.

Design/methodology/approach

The Carreau–Yasuda model was considered to capture the non-Newtonian behavior of the fluid. The dimensionless forms of governing equations, including the continuity equation for the Carreau–Yasuda fluid, are numerically solved by considering the volumetric force term of electric current (DC).

Findings

The impact of pertinent parameters such as electrokinetic diameter (R), Brinkman number and Peclet number is examined graphically. It is observed that for increasing R, the bulk velocity decreases. The velocity of the bulk fluid reaches from the minimum to the maximum state across the microchannel over time. At the electrokinetic diameter of 400, the maximum velocity was obtained. Temperature graphs are plotted with changes in the various Brinkman number (0.1 < Br < 0.7) at different times, and local Nusselt are compared against changes in the Peclet number (0.1 < ℘e < 0.5). The results of this study show that by increasing the Brinkman number from 0.25 to 0.7, the temperature along the microchannel doubles. It was observed that increasing the Peclet number from 0.3 to 0.5 leads to 200% increment of the Nusselt number along the microchannel in some areas along the microchannel. The maximum temperature occurs at Brinkman number of 0.7 and the maximum value of the local Nusselt number is related to Peclet number 0.5. Over time in the transient mode, the Nusselt number also decreases along the microchannel. By the increasing of time, the temperature increases at given value of Brinkman, which is insignificant at Brinkman number of 0.1. The simulation results have been verified by Newtonian and non-Newtonian flows with adequate accuracy.

Originality/value

This study contributes to discovering the effects of transient flow of electroosmotic flow for non-Newtonian Carreau–Yasuda fluid and transient heat transfer through rectangular microchannel. To the authors’ knowledge, the said investigation is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 May 2023

Ahmad Reza Roozbehi, Mohammad Zabetian Targhi, Mohammad Mahdi Heyhat and Ala Khatibi

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat…

Abstract

Purpose

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat sink with single-phase water coolant in a laminar regime. The heat sink performance evaluation criteria have been investigated for the parametric effects of vertex angle θ (10–120) and relative length (RL) (0.25–9) of hexagonal pin fins.

Design/methodology/approach

To carry out research and reduce the computational cost, only one heat sink unit is simulated and analyzed using periodic boundary conditions on the side walls and includes a hexagonal pin fin and half channel on both sides to reflect the structural characteristics completely. The governing equations are also solved using finite volume method.

Findings

The results reveal that θ = 60 and RL = 1 yield the optimum thermal performance and heat sink performance is significantly influenced by the vertex angle and RL. The modified hexagon geometry improves fluid flow behavior by reducing the volume of the recirculation region behind the pin fin, preventing its effects on the downstream pin fins and restricting the thermal boundary layer development on its straight side. At Re = 1,000, the modified geometry enhances the average Nusselt number by 24.46% and the thermal performance factor by 23.89%, demonstrating the potential of modified hexagonal pin fins to enhance micropin fin heat sink performance.

Originality/value

Prior studies suggest using the pin fins with a regular hexagonal cross-section to obtain better thermal performance. However, this comes with a higher pressure drop penalty. The modification of the hexagonal pin fin geometry has been investigated in this numerical study to enhance both the thermal and hydraulic performance of the micropin fin heat sink. Because little attention has been paid to the modification of the regular hexagonal pin fins, as a geometry inspired by natural honeycomb structures, its design optimization is relatively scarce, and a gap was felt in this field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2023

Jyoti Ranjan Mohapatra and Manoj Kumar Moharana

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity…

Abstract

Purpose

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity analysis are performed and compared with the traditional serpentine design. The substrate thickness and its thermal conductivity are varied to analyse the effect of axial-back conduction due to the conjugate nature of heat transfer.

Design/methodology/approach

The traditional serpentine minichannel is modified into five new fragmented designs with two inlets and two outlets. A three-dimensional numerical model involving the effect of conjugate heat transfer with a single-phase laminar fluid flow subjected to constant heat flux is solved using a finite volume-based computational fluid dynamics solver.

Findings

The minimum and maximum temperature differences are observed for the two branch fragmented flow designs. The two-branch and middle channel fragmented design shows better temperature uniformity over other designs while the three-branch fragmented designs exhibited better hydrodynamic performance.

Practical implications

MCPs could be used as an indirect liquid cooling method for battery thermal management of pouch and prismatic cells. Coupling the modified cold plates with a battery module and investigating the effect of different battery parameters and environmental effects in a transient state are the prospects for further research.

Originality/value

The study involves several aspects of evaluation for a conclusive decision on optimum channel design by analysing the performance plot between the temperature uniformity index, average base temperature and overall thermal performance. The new fragmented channels are designed in a way to facilitate the fluid towards the outlet in the minimum possible path thereby reducing the pressure drop, also maximizing the heat transfer and temperature uniformity from the substrate due to two inlets and a reversed-flow pattern. Simplified minichannel designs are proposed in this study for practical deployment and ease of manufacturability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2023

Shian Li, Chongyang Wang, Qiuwan Shen, Yuanzhe Cheng, Chengdong Peng, Guogang Yang and Bengt Ake Sunden

The purpose of this study is to design a new type of cold plate to improve the thermal performance of liquid-cooled thermal management system of lithium-ion batteries.

Abstract

Purpose

The purpose of this study is to design a new type of cold plate to improve the thermal performance of liquid-cooled thermal management system of lithium-ion batteries.

Design/methodology/approach

A cold plate with leaf type channels is proposed to enhance the cooling performance. Effects of the leaf type channel parameters (i.e. channel angle 20°, 40°, 60°, 80°; coolant mass flow rate 0.25 × 10–3, 0.50 × 10–3, 0.75 × 10–3, 1.00 × 10–3, 1.25 × 10–3 kg·s−1; channel number 1, 3, 5, 7) on the performance are numerically investigated by using a 3D mathematical model.

Findings

Compared to the traditional I type channels, the leaf type channels have better cooling performance. It is found that the battery temperature variation and channel pressure drop are decreased with decreasing channel angle and increasing channel number. In addition, the cooling performance can be improved by increasing the coolant mass flow rate.

Practical implications

This study can provide guidance for the development of novel effective cold plates.

Originality/value

The design of cold plates with leaf type channels can be used in liquid-cooled thermal management system to reduce the battery temperature difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 76