Search results

1 – 3 of 3
Article
Publication date: 27 April 2020

Emine Arman Kandirmaz, Arif Ozcan and Duygu Er Ulusoy

Stimulant-sensitive materials exhibit physical or chemical reversible changes in their properties as a result of environmental variables. One of these materials is thermochromic…

Abstract

Purpose

Stimulant-sensitive materials exhibit physical or chemical reversible changes in their properties as a result of environmental variables. One of these materials is thermochromic materials. Materials with thermochromic sensitivity change their color with heat exchange. For this reason, it can be used in many different fields such as security inks. Such substances decompose rapidly by being affected by weather conditions. Furthermore, the particle sizes are larger than normal pigments, and therefore, it is difficult to stabilize thermochromic dyes. Because of all these adverse conditions, thermochromic colorants must be protected before use in the ink. This protection is planned to be provided by the microcapsulation technique. The purpose of this study is to determine the thermochromic printing inks that can be stored stably by microcapsulation technique, to protect it from environmental conditions and the determination of printability parameters.

Design/methodology/approach

In this study, capsules with a core material of thermochromic dyeing with polyurea formaldehyde (PUF) or poly-phenolmelamine formaldehyde (PMF) shell were synthesized at appropriate pH and temperature using the appropriate solvent and mixing speed. The chemical structure and dimensions of the obtained capsules were examined by ATR-FTIR and scanning electron microscopy, respectively. The produced thermochromic microcapsules were mixed with alkyd resin and mineral oil and screen printing ink was obtained. Printability tests such as surface morphology, color, gloss and light fastness were applied.

Findings

As a result, it was determined that PMF is not a suitable encapsulation technique for thermochromic dyes under suitable conditions and eliminates thermochromic property by providing heat stability. It was found that PUF microcapsulation can be used in thermochromic dyestuff encapsulation and does not lose the thermochromic property. It has also been found that PUF microcapsules increase the lightfastness and stability of thermochromic dye ink.

Originality/value

This study provides experimental research on the encapsulation of a thermochromic dye and its use in ink.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 March 2020

Min Ji, Shuhai Liu and Huaping Xiao

The purpose of this paper is to study the tribology behavior of steel–steel contact under the lubrication of water-based drilling mud with different oleic acid-filled…

Abstract

Purpose

The purpose of this paper is to study the tribology behavior of steel–steel contact under the lubrication of water-based drilling mud with different oleic acid-filled microcapsules as lubricant additives.

Design/methodology/approach

A ball-on-disc tribometer was used to evaluate the lubrication properties of the steel–steel contact. The wear tracks of the worn surfaces were observed by a scanning electron microscope.

Findings

Results show that the dependence of both friction and wear on the category of additives shares a consistent pattern. In contrast to oleic acid and empty microcapsules, oleic acid-filled microcapsules achieve the best tribological performance which is related to the lubricant effect of oleic acid and the isolation and rolling abilities of microcapsules.

Practical implications

This study provides a helpful method of encapsulated lubricant additives to prolong lubrication performance for steel–steel contact.

Originality/value

This study has applied microcapsules to improve the tribological properties of drilling mud.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0320/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2016

Pooneh Kardar

– The purpose of this work was to prepare a catalyst-free microcapsules as self-healing agent in an automotive clearcoat to improve the scratch resistance of coatings.

Abstract

Purpose

The purpose of this work was to prepare a catalyst-free microcapsules as self-healing agent in an automotive clearcoat to improve the scratch resistance of coatings.

Design/methodology/approach

In this research, microcapsule with isophorone diisocyanate (IDPI) core and polyurethane shell were prepared and used in self-healing coatings. Microcapsules synthesised were characterised by thermal gravimeter and infrared spectra. The microcapsules were dispersed in an acrylic-melamine clearcoat, and the scratch resistance was evaluated.

Findings

The triplex product and the formed polyurethane bonds were confirmed by thermal gravimeter and infrared spectra. In addition, smooth spherical particles with a diameter of 1.5 to 1.7 micronmeters were observed by a scanning electron microscope. The microcapsules dispersed in an acrylic-melamine clearcoat increased the scratch resistance of coatings. Also, the self-healing feature of those coatings was proved.

Research limitations/implications

The size of microcapsules can affect its dispersion in the clearcoat and consequently affect the properties of the cured films.

Practical implications

The self-healing coatings are interested for many industries such as building and automotive industries. The reported data can be used by the formulators working in the R & D departments.

Social implications

Self-healing systems are considered as one of the smart coatings. Therefore, the developing of its knowledge can help to extend its usage to different applications.

Originality/value

The application of microcapsules in the coating as healing agents is a great challenge, which has been hardly investigated so far. In the current research, the effect of polyurethane-IDPI microcapsules in an automotive clearcoat as a self-healing coating was investigated.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3