Search results

1 – 1 of 1
Article
Publication date: 2 February 2023

Dzung Tien Nguyen, Phuc Hong Pham and Kien Trung Hoang

This paper aims to propose a method to reduce the resistance of silicon-based V-shaped electrothermal microactuator (VEM) by applying a surface sputtering process.

Abstract

Purpose

This paper aims to propose a method to reduce the resistance of silicon-based V-shaped electrothermal microactuator (VEM) by applying a surface sputtering process.

Design/methodology/approach

Four VEM’s samples have been fabricated using traditional silicon on insulator (SOI)-Micro-electro-mechanical System (MEMS) technology, three of them are coated with a thin layer of platinum on the top surface by sputtering technique with different sputtered times and the other is original. The displacements of the VEM are calculated and simulated to evaluate the advantages of sputtering method.

Findings

The measured results show that the average resistance of the sputtered structures is approximately 1.16, 1.55 and 2.4 times lower than the non-sputtering sample corresponding to the sputtering time of 1.5, 3 and 6 min. Simulation results confirmed that the maximum displacement of the sputtered VEM is almost 1.45 times larger than non-sputtering one in the range of voltage from 8 to 20 V. The experimental displacements are also measured to validate the better performance of the sputtered samples.

Originality/value

The experimental results demonstrated the better displacement of the VEM structure after using the platinum sputtering process. The improvement can be considered and applied for enhancing displacement as well as decreasing the driving voltage of the other electrothermal microactuators like U- or Z-shaped structures while combining with the low-cost SOI-MEMS micromachining technology.

Details

Microelectronics International, vol. 40 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Year

Last 12 months (1)

Content type

1 – 1 of 1