Search results

1 – 8 of 8
Article
Publication date: 27 August 2020

Devender Sheoran, Ramesh Kumar, Sunil Kumar and Kapil Kumar Kalkal

The purpose of this paper is to study the reflection of plane waves in an initially stressed rotating thermoelastic diffusive medium with micro-concentrations and two-temperature.

Abstract

Purpose

The purpose of this paper is to study the reflection of plane waves in an initially stressed rotating thermoelastic diffusive medium with micro-concentrations and two-temperature.

Design/methodology/approach

A two-dimensional model of generalized thermoelasticity is considered. The governing equations are transformed into the non-dimensional forms using the dimensionless variables. Then, potential functions are introduced for the decoupling of the waves. Further, appropriate boundary conditions are assumed to completely solve the problem. Finally, numerical computations are performed using MATLAB.

Findings

The problem is solved analytically and it is found that there exist five coupled waves in addition to an independent micro-concentration wave in the considered medium. The amplitude ratios and energy ratios of these reflected waves have also been computed numerically for a specific material.

Originality/value

The modulus values of amplitude ratios are presented graphically to exhibit the effects of angular velocity, initial stress, two-temperature, diffusion and micro-concentration parameters. The expressions of energy ratios obtained in explicit form are also depicted graphically as functions of angle of incidence. The law of conservation of energy at the free surface during reflection phenomenon is also verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2023

Manjeet Kumar, Jai Bhagwan, Pradeep Kaswan, Xu Liu and Manjeet Kumari

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Abstract

Purpose

The purpose of this study is to investigate the reflection of plane waves in a double-porosity (DP) thermoelastic medium.

Design/methodology/approach

To derive the theoretical formulas for elastic wave propagation velocities through the potential decomposition of wave-governing equations. The boundary conditions have been designed to incorporate the unique characteristics of the surface pores, whether they are open or sealed. This approach provides a more accurate and realistic mathematical interpretation of the situation that would be encountered in the field. The reflection coefficients are obtained through a linear system of equations, which is solved using the Gauss elimination method.

Findings

The solutions obtained from the governing equations reveal the presence of five inhomogeneous plane waves, consisting of four coupled longitudinal waves and a single transverse wave. The energy ratios of reflected waves are determined for both open and sealed pores on the stress-free, the thermally insulated surface of DP thermoelastic medium. In addition, the energy ratios are compared for the cases of a DP medium and a DP thermoelastic medium.

Originality/value

A numerical example is considered to investigate the effect of fluid type in inclusions, temperature and inhomogeneity on phase velocities and attenuation coefficients as a function of frequency. Finally, a sensitivity analysis is performed graphically to observe the effect of the various parameters on propagation characteristics, such as propagation/attenuation directions, phase shifts and energy ratios as a function of incident direction in double-porosity thermoelasticity medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 January 2023

Devender Sheoran, Komal Yadav, Baljit Singh Punia and Kapil Kumar Kalkal

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE…

Abstract

Purpose

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE theories: Lord–Shulman (LS) and Green–Lindsay (GL). The governing equations are derived in rectangular Cartesian coordinates for a two dimensional problem.

Design/methodology/approach

All the physical properties of the semiconductor are supposed to vary exponentially with distance. The analytical solution is procured by employing normal mode technique on the resulting non-dimensional coupled field equations with appropriate boundary conditions.

Findings

For the mechanically loaded thermally insulated surface, normal displacement, stress components, temperature distribution and carrier density are calculated numerically with the help of MATLAB software for a silicon semiconductor and displayed graphically. Some particular cases of interest have also been deduced from the present results.

Originality/value

The effects of rotation and non-homogeneity on the different physical fields are investigated on the basis of analytical and numerical results. Comparisons are made with the results predicted by GL theory in the presence and absence of gravity for different values of time. Comparisons are also made between the three theories in the presence of rotation, gravity and in-homogeneity. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2022

Manjeet Kumar, Xu Liu, Manjeet Kumari and Poonam Yadav

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Abstract

Purpose

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Design/methodology/approach

A theoretical formulation of partially saturated poro-thermoelastic solid is used in this study established by Zhou et al. (2019). The incidence of two primary waves (P and SV) is taken. The incident wave from the elastic solid induces two reflected waves and five refracted waves. Due to viscous pore fluids, partially saturated poro-thermoelastic solid behave dissipative, whereas elastic solid behaves non-dissipative. As a result, both reflected and incident waves are homogeneous. However, all the refracted waves are inhomogeneous. A non-singular system of linear equations is formed by the coefficients of reflection and refraction for a specified incident wave. The energy shares of various reflected and refracted waves are determined by using these reflection and refraction factors. Finally, a sensitivity analysis is performed, and the effect of critical variables on energy partitioning at the interface is observed. The numerical example shows that throughout the process of reflection/refraction, the energy of incidence is conserved at all angles of incidences.

Findings

This study demonstrated two refracted (homogeneous) and five refracted (inhomogeneous) waves due to the incident wave from elastic solid. The reflection and refraction coefficients and partitioning of incident energy are acquired as a part of diverse physical parameters of the partially saturated poro-thermoelastic media. The interference energies between unlike pairs of refracted waves have been discovered due to the dissipative behavior of unsaturated poro-thermoelastic solid.

Originality/value

The sensitivity of different energy shares to various aspects of the considered model is graphically analyzed for a specific numerical model. The energy balance is maintained by combining interaction energy and bulk wave energy shares.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2021

Manjeet Kumar, Xu Liu, Kapil Kumar Kalkal, Virender Dalal and Manjeet Kumari

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such…

Abstract

Purpose

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such media..

Design/methodology/approach

The mathematical model evolved by Zhou et al. (2019) is solved through the Helmholtz decomposition theorem. The propagation velocities of bulk waves in partially saturated poro-thermoelastic media are derived by using the potential functions. The phase velocities and attenuation coefficients are expressed in terms of inhomogeneity angle. Reflection characteristics (phase shift, loci of vertical slowness, amplitude, energy) of elastic waves are investigated at the stress-free thermally insulated boundary of a considered medium. The boundary can be permeable or impermeable. The incident wave is portrayed with both attenuation and propagation directions (i.e. inhomogeneous wave). Numerical computations are executed by using MATLAB.

Findings

In this medium, the permanence of five inhomogeneous waves is found. Incidence of the inhomogeneous wave at the thermally insulated stress-free surface results in five reflected inhomogeneous waves in a partially saturated poro-thermoelastic media. The reflection coefficients and splitting of incident energy are obtained as a function of propagation direction, inhomogeneity angle, wave frequency and numerous thermophysical features of the partially saturated poro-thermoelastic media. The energy of distinct waves (incident wave, reflected waves) accompanying interference energies between distinct pairs of waves have been exhibited in the form of an energy matrix.

Originality/value

The sensitivity of propagation characteristics (velocity, attenuation, phase shift, loci of vertical slowness, energy) to numerous aspects of the physical model is analyzed graphically through a particular numerical example. The balance of energy is substantiated by virtue of the interaction energies at the thermally insulated stress-free surface (opened/sealed pores) of unsaturated poro-thermoelastic media through the bulk waves energy shares and interaction energy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2021

Devender Sheoran, Rajesh Kumar, Seema Thakran and Kapil Kumar Kalkal

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under…

Abstract

Purpose

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under the purview of the Green-Naghdi model II of generalized thermoelasticity. The formulation is subjected to a mechanical load.

Design/methodology/approach

The normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

For isothermal and insulated boundaries, discussions have been made to highlight the influences of rotational speed, nonlocality, temperature-dependent properties and time on the physical quantities.

Originality/value

The exact expressions for the displacement components, stresses and temperature field are obtained in the physical domain. These are also calculated numerically for a magnesium crystal-like material and depicted through graphs to observe the variations of the considered physical quantities. The present study is useful and valuable for the analysis of problems involving mechanical shock, rotational speed, nonlocal parameter, temperature-dependent properties and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2022

Vipin Gupta, Rajesh Kumar, Manjeet Kumar, Vijayata Pathania and M.S. Barak

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Abstract

Purpose

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Design/methodology/approach

This investigation studied the reflection and transmission of plane waves on an interface of nonlocal orthotropic piezothermoelastic space (NOPHS) and fluid half-space (FHS) in reference to dual-phase-lag theory under three different temperature models, namely, without-two-temperature, classical-two-temperature, and hyperbolic-two-temperature with memory-dependent derivatives (MDDs).

Findings

The primary (P) plane waves propagate through FHS and strike at the interface x3 = 0. The results are one wave reflected in FHS and four waves transmitted in NOPHS. It is noticed that these ratios are observed under the impact of nonlocal, dual-phase-lag (DPL), two-temperature and memory-dependent parameters and are displayed graphically. Some particular cases are also deduced, and the law of conservation of energy across the interface is justified.

Research limitations/implications

According to the available literature, there is no substantial research on the considered model incorporating NOPHS and FHS with hyperbolic two-temperature, DPL and memory.

Practical implications

The current model may be used in various fields, including earthquake engineering, nuclear reactors, high particle accelerators, aeronautics, soil dynamics and so on, where MDDs and conductive temperature play a significant role. Wave propagation in a fluid-piezothermoelastic media with different characteristics such as initial stress, magnetic field, porosity, temperature, etc., provides crucial information about the presence of new and modified waves, which is helpful in a variety of technical and geophysical situations. Experimental seismologists, new material designers and researchers may find this model valuable in revising earthquake estimates.

Social implications

The researchers may classify the material using the two-temperature parameter and the time-delay operator, where the parameter is a new indication of its capacity to transmit heat in interaction with various materials.

Originality/value

The submitted manuscript is original work done by the team of said authors and each author contributed equally to preparing this manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 November 2022

Sandeep Kundu, Kapil Kumar Kalkal, Monika Sangwan and Devender Sheoran

The purpose of the present paper is to investigate the thermo-mechanical interactions in an initially stressed nonlocal micropolar thermoelastic half-space having void pores under…

154

Abstract

Purpose

The purpose of the present paper is to investigate the thermo-mechanical interactions in an initially stressed nonlocal micropolar thermoelastic half-space having void pores under Lord–Shulman model. A moving thermal shock is applied to the formulation.

Design/methodology/approach

The normal mode technique is adopted to obtain the exact expressions of the physical quantities.

Findings

Numerical computations for stresses, displacement components, temperature field and change in the volume fraction field are performed for suitable material and are depicted graphically. Some comparisons have been shown in figures to estimate the effects of micropolarity, initial stress, voids, nonlocal parameter and time on the resulting quantities.

Originality/value

The exact expressions for the displacement components, stresses, temperature and change in the volume fraction field are obtained in the physical domain. Although numerous investigations do exist to observe the disturbances in a homogeneous, isotropic, initially stressed, micropolar thermoelastic half-space, the work in its current form has not been established by any scholar till now. The originality of the present work lies in the formulation of a fresh research problem to investigate the dependence of different physical fields on nonlocality parameters, micropolarity, initial stress, porosity and time due to the application of a moving thermal shock.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8