Search results

1 – 10 of over 5000
Article
Publication date: 23 January 2009

Gino Rinaldi, Muthukumaran Packirisamy, Ion Stiharu and Nezih Mrad

The purpose of this paper is to demonstrate the simplicity and versatility of micro‐cantilever based sensors and to present the influence of added mass and stress on the frequency…

2746

Abstract

Purpose

The purpose of this paper is to demonstrate the simplicity and versatility of micro‐cantilever based sensors and to present the influence of added mass and stress on the frequency response of the sensor in order to determine the most suitable sensing domain for a given application.

Design/methodology/approach

The frequency response of micro‐cantilevers depends not only on the applied mass and surface stress, but also on the mass position. An interpretation of the theoretical frequency results of the 1st and 2nd natural frequencies, for added mass, identifies a nodal point for the 2nd natural frequency which demonstrates mass invariance. Hence, at this nodal point, the frequency response remains constant regardless of mass and may be used for identifying purely induced surface stress influences on the micro‐cantilever's dynamic response. The Rayleigh‐Ritz energy method is used for the theoretical analysis. Theoretical results are compared with experimental results.

Findings

A graph of the 2nd natural frequency of micro‐cantilevers with added mass demonstrates the variability of the frequency with mass position on the micro‐cantilever. Of particular interest is the nodal point at which mass independence is revealed. This nodal point may be exploited to investigate purely stress‐related influences on the dynamic characteristics of micro‐cantilever sensors, thereby eliminating such effects as reactant evaporation from the micro‐cantilever sensor surface. In this regard, the nodal point of the 2nd natural frequency response is used to decouple mass‐stress influences.

Research limitations/implications

Owing to the micro‐scale size of the micro‐cantilevers, it may not be possible to apply mass or stress directly at the nodal point and to concentrate its influence there. Hence, a certain amount of influence due to mass‐stress coupling may remain in the frequency responses observed.

Practical implications

Silicon micro‐cantilevers can be easily shaped and sensitized to a variety of influences. These qualities are highly regarded for sensor applications. The work presented herein, contributes to the optimization of micro‐cantilever sensors' dynamic response as a function of mass and surface stress influences. The main criterion for choosing one or the other is based on the time for the surface reaction to take place between the sensing material and the target material. The results presented contribute to the performance optimization of micro‐cantilever based medical and bio‐sensors.

Originality/value

Surface stress effects are generally of much smaller magnitude than mass influences; hence, through an investigation of the stress effects at the nodal point of the 2nd natural frequency it is possible to eliminate the mass influence completely. At this position mass and stress influences are decoupled and the sensor response can be uniquely quantified as a function of the applied stress. This is important for bio‐medical and health monitoring applications in which changes to the applied mass or surface stress on a micro‐cantilever sensor, may be readily observed through changes to the natural frequency response of the micro‐cantilever.

Details

Sensor Review, vol. 29 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2017

Zhiqiang Yu, Qing Shi, Huaping Wang, Ning Yu, Qiang Huang and Toshio Fukuda

The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale.

Abstract

Purpose

The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale.

Design/methodology/approach

This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed.

Findings

Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics.

Originality/value

This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 July 2021

Sudarsana Jena and Ankur Gupta

Considering its vast utility in industries, this paper aims to present a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide…

Abstract

Purpose

Considering its vast utility in industries, this paper aims to present a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide area of applications, its design aspects and challenges, to provide state-of-the-art gist to the researchers of the similar domain at one place.

Design/methodology/approach

Swiftly emerging research prospects in the micro-electro-mechanical system (MEMS) enable to build complex and sophisticated micro-structures on a substrate containing moving masses, cantilevers, flexures, levers, linkages, dampers, gears, detectors, actuators and many more on a single chip. One of the MEMS initial products that emerged into the micro-system technology is MEMS pressure sensor. Because of their high performance, low cost and compact in size, these sensors are extensively being adopted in numerous applications, namely, aerospace, automobile and bio-medical domain, etc. These application requirements drive and impose tremendous conditions on sensor design to overcome the tedious design and fabrication procedure before its reality. MEMS-based pressure sensors enable a wide range of pressure measurement as per the application requirements.

Findings

The paper provides a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide area of applications, its design aspects and challenges, to provide state of the art gist to the researchers of the similar domain at one place.

Originality/value

The present paper discusses the basics of MEMS pressure sensors, their working principles, different design aspects, classification, type of sensing diaphragm used and illustration of various transduction mechanisms. Moreover, this paper presents a comprehensive review on present trend of research on MEMS-based pressure sensors, its applications and the research gap observed till date along with the scope for future work, which has not been discussed in earlier reviews.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 August 2014

Bian Tian, Yulong Zhao, Zhe Niu and Jiang Zhuangde

The purpose of this paper is to report on a piezoresistive pressure sensor for micro-pressure measurement with a cross-beam membrane (CBM) structure. This study analyzes the…

1036

Abstract

Purpose

The purpose of this paper is to report on a piezoresistive pressure sensor for micro-pressure measurement with a cross-beam membrane (CBM) structure. This study analyzes the dynamic characteristics of the proposed device.

Design/methodology/approach

This CBM sensor possesses high stiffness and sensitivity, measuring dynamic pressure more effectively in a high-frequency environment compared with other piezoresistive structures. The dynamic characteristics are derived using the finite element method to analyze the dynamic responses of the new structure, including natural frequency and lateral effect performances. The CBM dynamic performances are compared with traditional structures.

Findings

The pressure sensor performance was evaluated, and the experimental results indicate that they all exhibit similar dynamic characteristics as the designed model. Compared with traditional structures such as the single island, the CBM proves to be superior in evaluating the dynamic performances of pressure sensors at high frequencies of > 30 kHz.

Originality/value

Most studies of this micro pressure sensors attempt to promote the sensitivity or focus on the static performance of pressure sensor with micro gauge. This study is concerned with analyze the dynamic characterism of micro pressure sensor and compared with the traditional structures, that prove the CBM structure has stable dynamic performance and is a better option for measuring dynamic micro pressure in biomedical applications.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2119

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1999

Kazuhiro Tsuruta, Yoshikazu Mikuriya and Yuichi Ishikawa

This paper describes some aspects of micro sensors developed as part of the micromachine project in Japan. This national R&D project, industrial science and technology frontier…

1724

Abstract

This paper describes some aspects of micro sensors developed as part of the micromachine project in Japan. This national R&D project, industrial science and technology frontier program “Micromachine technology”, was inaugurated in 1991 as a ten‐year project. The R&D goal is to establish technologies to realize micromachines for the following practical applications; maintenance and repair of power plant facilities; miniaturization of manufacturing facilities; medical diagnosis and treatment. As a result, various types of micro sensors have been successfully developed.

Details

Sensor Review, vol. 19 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 June 2017

Bian Tian, Huafeng Li, Ning Yang, Yulong Zhao, Pei Chen and Hanyue Liu

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean…

290

Abstract

Purpose

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean populations and transmission of the ocean energy, especially the measurement of turbulence flow velocity. So, it is particularly urgent to provide a high-sensitivity, low-cost and reliable fluid flow sensor for industry and consumer product application. This paper aims to design a micro fluid flow sensor with a cross beam membrane structure. The designed sensor can detect the fluid flow velocity and has a low kinetic energy dissipation rate.

Design/methodology/approach

In this paper, a micro fluid flow sensor with a cross beam membrane structure is designed to measure the ocean turbulence flow velocity. The design, simulation, fabrication and measurement of the designed sensor are discussed. By testing the simply packaged sensor in the fluid flow and analyzing the experiments data, the results show that the designed sensor has favorable performance.

Findings

The paper describes the tests of the designed sensor, and the experimental results show that the designed sensor can measure the fluid flow velocity and has a sensitivity of 11.12 mV/V/(m/s)2 and a low kinetic energy dissipation rate in the range of 10-6-10-4 W/kg.

Originality/value

This paper provides a micro-electro-mechanical systems fluid flow sensor used to measure ocean turbulence flow velocity.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 October 2018

Zhu Feng, Shaotao Zhi, Lei Guo, Chong Lei and Yong Zhou

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Abstract

Purpose

This paper aims to investigate magnetic field anneal in micro-patterned Co-based amorphous ribbon on giant magneto-impedance (GMI) effect enhancement.

Design/methodology/approach

The amorphous ribbons were annealed in transverse and longitudinal magnetic field. The influence of different field annealing directions on GMI effect and impedance Z, resistance R and reactance X with a series of line width have been deeply analyzed.

Findings

In comparison with GMI sensors microfabricated by unannealed and transversal field annealed ribbons, GMI sensor which was designed and microfabricated by longitudinal field anneal ribbon performs better. The results can be explained by the domain wall motion and domain rotation during annealing process and the geometric structure of Co-based GMI sensor. In addition, shrinking the line width of GMI sensor can promote GMI effect significantly because of the effect of demagnetizing field, and the optimum GMI ratio is 209.7 per cent in longitudinal field annealed GMI sensor with 200 μm line width.

Originality/value

In conclusion, annealing in longitudinal magnetic field and decreasing line width can enhance GMI effect in micro-patterned Co-based amorphous ribbon.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 August 2023

Yankun Tang, Ming Zhang, Kedong Chen, Sher Ali Nawaz, Hairong Wang, Jiuhong Wang and Xianqing Tian

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized…

Abstract

Purpose

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized, low-cost, mass-scale produced O2 sensor operating around 30°C.

Design/methodology/approach

The O2 sensor based on lanthanum fluoride (LaF3) solid electrolyte thin film was developed using MEMS technology. The principle of the sensor was a galvanic cell H2O, O2, Pt | LaF3 | Sn, SnF2 |, in which the Sn film was prepared by magnetron sputtering, and the LaF3 film was prepared by thermal resistance evaporation.

Findings

Through pretreatments, the sensor’s response signal to 40% oxygen concentration was enhanced from 1.9 mV to 46.0 mV at 30°C and 97.0% RH. Tests at temperatures from 30°C to 50°C and humidity from 32.4% RH to 97.0% RH indicated that the output electromotive force (EMF) has a linear relationship with the logarithm of the oxygen concentration. The sensitivity of the sensor increases with an increase in both humidity and temperature in the couple mode, and the EMF of the sensor follows well with the Nernst equation at different temperatures and humidity.

Practical implications

This research could be applied to monitor the oxygen concentration below 25% in confined spaces at room temperature safely without a power supply.

Originality/value

The relationship between temperature and humidity coupling and the response of the sensor was obtained. The nano-film material was integrated with the MEMS process. It is expected to be practically applied in the future.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 June 2014

Zhongliang Yu, Yulong Zhao, Lili Li, Cun Li, Xiawei Meng and Bian Tian

The purpose of this study is to develop a piezoresistive absolute micro-pressure sensor for altimetry. For this application, both high sensitivity and high overload resistance are…

Abstract

Purpose

The purpose of this study is to develop a piezoresistive absolute micro-pressure sensor for altimetry. For this application, both high sensitivity and high overload resistance are required. To develop a piezoresistive absolute micro-pressure sensor for altimetry, both high sensitivity and high-overload resistance are required. The structure design and optimization are critical for achieving the purpose. Besides, the study of dynamic performances is important for providing a solution to improve the accuracy under vibration environments.

Design/methodology/approach

An improved structure is studied through incorporating sensitive beams into the twin-island-diaphragm structure. Equations about surface stress and deflection of the sensor are established by multivariate fittings based on the ANSYS simulation results. Structure dimensions are determined by MATLAB optimization. The silicon bulk micromachining technology is utilized to fabricate the sensor prototype. The performances under both static and dynamic conditions are tested.

Findings

Compared with flat diaphragm and twin-island-diaphragm structures, the sensor features a relatively high sensitivity with the capacity of suffering atmosphere due to the introduction of sensitive beams and the optimization method used.

Originality/value

An improved sensor prototype is raised and optimized for achieving the high sensitivity and the capacity of suffering atmosphere simultaneously. A general optimization method is proposed based on the multivariate fitting results. To simplify the calculation, a method to linearize the nonlinear fitting and optimization problems is presented. Moreover, a differential readout scheme attempting to decrease the dynamic interference is designed.

Details

Sensor Review, vol. 34 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 5000