Search results
1 – 1 of 1Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam
This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.
Abstract
Purpose
This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.
Design/methodology/approach
The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.
Findings
The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.
Practical implications
The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.
Originality/value
This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.
Highlights
Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity
Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae
Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation
Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1
Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity
Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae
Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation
Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1
Details