Search results

1 – 9 of 9
Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2024

Thuy Thanh Tran, Roger Leonard Burritt, Christian Herzig and Katherine Leanne Christ

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and…

Abstract

Purpose

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and transformational links between levels and challenges are related to the adoption and utilization of material flow cost accounting in Vietnam, to encourage green productivity.

Design/methodology/approach

Based on triangulation of public documents at different institutional levels and a set of semi-structured interviews, situational and transformational links and challenges for material flow cost accounting in Vietnam are examined using purposive and snowball sampling of key actors.

Findings

Using a multi-level framework the research identifies six situational and transformational barriers to implementation of material flow cost accounting and suggests opportunities to overcome these. The weakest links identified involve macro-to meso-situational and micro-to macro-transformational links. The paper highlights the dominance of meso-level institutions and lack of focus on micro transformation to cut waste and enable improvements in green productivity.

Practical implications

The paper identifies ways for companies in Vietnam to reduce unsustainability and enable transformation towards sustainable management and waste reduction.

Originality/value

The paper is the first to develop and use a multi-level/multi-time period framework to examine the take-up of material flow cost accounting to encourage transformation towards green productivity. Consideration of the Vietnamese case builds understanding of the challenges for achieving United Nations Sustainable Development Goal number 12, to help enable sustainable production and consumption patterns.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 24 April 2024

Salwa Moustafa Amer Mahmoud, Tarek Hamdy, Mohamed Fares, Wissam Ayman, Shrouk Muhamed, Aya Abdel Khaliq and Lilian Salah

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it…

Abstract

Purpose

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it for as long as possible.

Design/methodology/approach

Degraded papers dating back two centuries were separated into paper samples for consolidation processes. Funori – a marine spleen – was used as a traditional consolidation material and a mixture with ZnO NPs compared with modern materials, such as cellulose nanocrystals. The samples were aged for 25 years, examinations and analyses were performed using scanning electron microscopy and color change was assessed using the CIELAB system, X-ray diffraction and Fourier-transform infrared spectroscopy.

Findings

According to the results, using traditional materials to consolidate damage, such as funori, after aging resulted in glossiness on the surface, a color change and increased water content and oxidation. Furthermore, samples treated with a mixture of ZnO NPs and funori revealed that the mixture improved the sample properties and increased the degree of crystallization. Cellulose nanocrystals improved the surface, filled gaps, formed bridges between the fibers and acted as a protector from aging effects.

Originality/value

This paper highlights the ability of nanomaterials to enhance the properties of materials as additives and treat the paper manuscripts from weaknesses.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 21 March 2023

Matthew Ikuabe, Clinton Ohis Aigbavboa, Chimay Anumba and Ayodeji Emmanuel Oke

The quest for improved facilities management (FM) delivery is receiving immense focus through the incorporation of innovative technologies such as cyber-physical systems (CPS)…

1133

Abstract

Purpose

The quest for improved facilities management (FM) delivery is receiving immense focus through the incorporation of innovative technologies such as cyber-physical systems (CPS). The system’s high computational capabilities can aid in the abatement of some of the challenges plaguing FM functions. However, the requisite ingredients for the uptake of the system for FM have still not gained scholarly attention. Because performance measurement is a vital index in determining the outcome of FM methods, this study aims to investigate the influence of performance measurement indicators that are influential to the uptake of CPS for delivering FM functions.

Design/methodology/approach

A qualitative technique was adopted using the Delphi technique. The panel of experts for the study was selected through a well-defined process based on stipulated criteria. The experts gave their opinions in two rounds before consensus was attained on the identified performance measurement indicators, whereas methods of data analysis were measures of central tendency, inter-quartile deviation and Mann–Whitney U test.

Findings

Results from this study showed that 11 of the performance indicators were of very high significance in the determination of the uptake of CPS for FM functions, whereas 5 of the indicators were proven to be of high significance. Furthermore, there was no statistical difference in the opinions of the experts based on their affiliation with academic institutions and professional practice.

Practical implications

The findings of this study contribute practically by aiding policymakers, facility managers and relevant stakeholders with the vital knowledge of delivery mandates for efficient FM services that can spur the uptake of digital technologies such as CPS.

Originality/value

This study contributes to the body of knowledge as it unveils a roadmap of the expected performance output and its accompanying evaluation that would drive the adoption of a promising technology such as CPS in the delivery of FM tasks.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 19 April 2024

Danar Agus Susanto, Mokhamad Suef, Putu Dana Karningsih and Bambang Prasetya

This study’s main objective is to explore the ISO 9001 implementation model and identify a future research agenda. This is important because not all organizations find it easy to…

Abstract

Purpose

This study’s main objective is to explore the ISO 9001 implementation model and identify a future research agenda. This is important because not all organizations find it easy to implement ISO 9001, and not all organizations get positive benefits after implementing it.

Design/methodology/approach

The paper presents a comprehensive review of the literature on ISO 9001 implementation models using the preferred reporting items for systematic reviews (PRISMA) methodology to systematically review the existing literature on ISO 9001 implementation models. Relevant studies published from 2003 to early 2023 are explored to reveal the research landscape, gaps and trends.

Findings

Many ISO 9001 implementation methods have been developed for actual implementation in organizations, including models, frameworks, special variable considerations, application uses and integration. These methods were developed and applied to cover gaps regarding constraints, unbeneficial, special conditions, implementation objectives and organization types in ISO 9001 implementation. Current issues and future research on ISO 9001 implementation models were found, namely ISO 9001 implementation models specific to SMEs, ISO 9001 implementation levels, ISO 9001 implementation models that are agile to change, and affordable certification models.

Originality/value

Only a few researchers have systematically reviewed the literature or taken a bibliometric approach in their analyses to provide an overview of the current trends and links to ISO 9001 implementation models. The ISO 9001 standard is a general standard and can be applied by all organizations with the implementation method left to the implementer. Many implementation methods have been developed, but several implementation obstacles and disadvantages are still found. It is important to know the extent of current research and discover future research gaps regarding methods of implementing the ISO 9001 standard.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

18

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

466

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 9 of 9