Search results

1 – 10 of over 12000
Article
Publication date: 6 February 2024

Junyi Chen, Buqing Cao, Zhenlian Peng, Ziming Xie, Shanpeng Liu and Qian Peng

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application…

Abstract

Purpose

With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed.

Design/methodology/approach

In this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked.

Findings

Experimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR.

Originality/value

In this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.

Details

International Journal of Web Information Systems, vol. 20 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

2009

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 October 2023

Miguel Calvo and Marta Beltrán

This paper aims to propose a new method to derive custom dynamic cyber risk metrics based on the well-known Goal, Question, Metric (GQM) approach. A framework that complements it…

Abstract

Purpose

This paper aims to propose a new method to derive custom dynamic cyber risk metrics based on the well-known Goal, Question, Metric (GQM) approach. A framework that complements it and makes it much easier to use has been proposed too. Both, the method and the framework, have been validated within two challenging application domains: continuous risk assessment within a smart farm and risk-based adaptive security to reconfigure a Web application firewall.

Design/methodology/approach

The authors have identified a problem and provided motivation. They have developed their theory and engineered a new method and a framework to complement it. They have demonstrated the proposed method and framework work, validating them in two real use cases.

Findings

The GQM method, often applied within the software quality field, is a good basis for proposing a method to define new tailored cyber risk metrics that meet the requirements of current application domains. A comprehensive framework that formalises possible goals and questions translated to potential measurements can greatly facilitate the use of this method.

Originality/value

The proposed method enables the application of the GQM approach to cyber risk measurement. The proposed framework allows new cyber risk metrics to be inferred by choosing between suggested goals and questions and measuring the relevant elements of probability and impact. The authors’ approach demonstrates to be generic and flexible enough to allow very different organisations with heterogeneous requirements to derive tailored metrics useful for their particular risk management processes.

Details

Information & Computer Security, vol. 32 no. 2
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

Aşkin Özdağoğlu, Eda Acar, Mücella Güner and Ayşegül Çetmeli Bakadur

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the…

Abstract

Purpose

The textile industry harms the environment at every stage of production, from the acquisition of raw materials to the disposal of finished products. It is very important for the textile industry to adapt to the basic policies on environmental sensitivity and sustainability to keep up with the transformation in production processes and the rapid changes occurring around the world in order to exist in global competition. Within the scope of sustainable development goals, it is of great importance to measure and evaluate indicators of all processes of the sector. This paper aims to present application of multi-criteria decision making (MCDM) methods for the assessment of sustainable development in textile industry.

Design/methodology/approach

The data of a multinational clothing company’s four-year sustainability performance between 2018 and 2021 were evaluated under 22 sustainability parameters determined using two new MCDM techniques, namely the combined consensus solution method and multi-attribute ideal real comparative analysis. In determining the criteria, priority key indicators were determined by taking into account the sector’s relationship with the environment, raw material consumption and social adequacy.

Findings

According to the application results of both methods, the year 2021 shows the best performance. It has been seen that the sustainability performance of the Inditex group has increased over the years and the results of the applied models support each other. It can be suggested that the proposed approach be applied to evaluate the progress in the textile sector with the relevant data on a particular company or on a macro scale.

Originality/value

This study makes an important contribution to the field in terms of the fact that the methods used are recent and have no application in the field of textiles. It allows the evaluation of different sustainability criteria together using a single method. It is very important to share data on sustainability indicators with customers, employees, suppliers, investors, partner organizations and society and evaluate performance. Analyzing sustainability performance on the basis of annual reports is important in terms of identifying good practices, sharing them with the community and setting an example. In addition, using scientific methods in the evaluation of the sustainability report data published by companies regularly provides significant feedback for policymakers and academics.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 27 September 2023

Misty Sabol, Joe Hair, Gabriel Cepeda, José L. Roldán and Alain Yee Loong Chong

Expanded awareness and application of recent PLS-SEM reporting practices were again called for by Hair (2022) in his PLS 2022 Keynote Address. This paper aims to analyze and…

Abstract

Purpose

Expanded awareness and application of recent PLS-SEM reporting practices were again called for by Hair (2022) in his PLS 2022 Keynote Address. This paper aims to analyze and extend the application of PLS-SEM in Industrial Management and Data Systems (IMDS) to focus on trends emerging in the more recent 2016–2022 period.

Design/methodology/approach

A review of PLS-SEM applications in information systems studies published in IMDS and MISQ for the period 2012–2022 identifies and comments on a total of 135 articles. Selected emerging advanced analytical PLS-SEM applications are also highlighted to expand awareness of their value in more rigorously evaluating model results.

Findings

There is a continually increasing maturity of the information systems field in applying PLS-SEM, particularly for IMDS authors. Model complexity and improved prediction assessment as well as other advanced analytical options are increasingly identified as reasons for applying PLS-SEM.

Research limitations/implications

Findings demonstrate the continued use and acceptance of PLS-SEM as a useful alternative research methodology within IS. PLS-SEM is the preferred SEM method in many research settings, but particularly when the research objective is prediction to the population, mediation and mediated moderation, formative constructs are specified, constructs must be modeled as higher-order and for competing model comparisons.

Practical implications

This update on PLS-SEM applications and recent methodological developments will help authors to better understand and apply the method, as well as publish their work. Researchers are encouraged to engage in more complete analyses and include enhanced reporting procedures.

Originality/value

Applications of PLS-SEM for prediction, theory testing and confirmation are increasing. Information systems scholars should continue to exercise sound practice by reporting reasons for using PLS-SEM and recognizing its wider applicability for both exploratory and confirmatory research.

Details

Industrial Management & Data Systems, vol. 123 no. 12
Type: Research Article
ISSN: 0263-5577

Keywords

Content available
Article
Publication date: 23 October 2023

Adam Biggs and Joseph Hamilton

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle…

Abstract

Purpose

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle differences can be challenging. For example, is a speed difference of 300 milliseconds more important than a 10% accuracy difference on the same drill? Marksmanship evaluations must have objective methods to differentiate between critical factors while maintaining a holistic view of human performance.

Design/methodology/approach

Monte Carlo simulations are one method to circumvent speed/accuracy trade-offs within marksmanship evaluations. They can accommodate both speed and accuracy implications simultaneously without needing to hold one constant for the sake of the other. Moreover, Monte Carlo simulations can incorporate variability as a key element of performance. This approach thus allows analysts to determine consistency of performance expectations when projecting future outcomes.

Findings

The review divides outcomes into both theoretical overview and practical implication sections. Each aspect of the Monte Carlo simulation can be addressed separately, reviewed and then incorporated as a potential component of small arms combat modeling. This application allows for new human performance practitioners to more quickly adopt the method for different applications.

Originality/value

Performance implications are often presented as inferential statistics. By using the Monte Carlo simulations, practitioners can present outcomes in terms of lethality. This method should help convey the impact of any marksmanship evaluation to senior leadership better than current inferential statistics, such as effect size measures.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Article
Publication date: 3 November 2023

Nihan Yildirim, Derya Gultekin, Cansu Hürses and Abdullah Mert Akman

This paper aims to use text mining methods to explore the similarities and differences between countries’ national digital transformation (DT) and Industry 4.0 (I4.0) policies…

Abstract

Purpose

This paper aims to use text mining methods to explore the similarities and differences between countries’ national digital transformation (DT) and Industry 4.0 (I4.0) policies. The study examines the applicability of text mining as an alternative for comprehensive clustering of national I4.0 and DT strategies, encouraging policy researchers toward data science that can offer rapid policy analysis and benchmarking.

Design/methodology/approach

With an exploratory research approach, topic modeling, principal component analysis and unsupervised machine learning algorithms (k-means and hierarchical clustering) are used for clustering national I4.0 and DT strategies. This paper uses a corpus of policy documents and related scientific publications from several countries and integrate their science and technology performance. The paper also presents the positioning of Türkiye’s I4.0 and DT national policy as a case from a developing country context.

Findings

Text mining provides meaningful clustering results on similarities and differences between countries regarding their national I4.0 and DT policies, aligned with their geographic, economic and political circumstances. Findings also shed light on the DT strategic landscape and the key themes spanning various policy dimensions. Drawing from the Turkish case, political options are discussed in the context of developing (follower) countries’ I4.0 and DT.

Practical implications

The paper reveals meaningful clustering results on similarities and differences between countries regarding their national I4.0 and DT policies, reflecting political proximities aligned with their geographic, economic and political circumstances. This can help policymakers to comparatively understand national DT and I4.0 policies and use this knowledge to reflect collaborative and competitive measures to their policies.

Originality/value

This paper provides a unique combined methodology for text mining-based policy analysis in the DT context, which has not been adopted. In an era where computational social science and machine learning have gained importance and adaptability to political and social science fields, and in the technology and innovation management discipline, clustering applications showed similar and different policy patterns in a timely and unbiased manner.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 14 February 2024

Batuhan Kocaoglu and Mehmet Kirmizi

This study aims to develop a modular and prescriptive digital transformation maturity model whose constituent elements have conceptual integrity as well as reveal the priority…

Abstract

Purpose

This study aims to develop a modular and prescriptive digital transformation maturity model whose constituent elements have conceptual integrity as well as reveal the priority weights of maturity model components.

Design/methodology/approach

A literature review with a concept-centric analysis enlightens the characteristics of constituent parts and reveals the gaps for each component. Therefore, the interdependency network among model dimensions and priority weights are identified using decision-making trial and evaluation laboratory (DEMATEL)-based analytic network process (ANP) method, including 19 industrial experts, and the results are robustly validated with three different analyses. Finally, the applicability of the developed maturity model and the constituent elements are validated in the context of the manufacturing industry with two case applications through a strict protocol.

Findings

Results obtained from DEMATEL-based ANP suggest that smart processes with a priority weight of 17.91% are the most important subdimension for reaching higher digital maturity. Customer integration and value, with a priority weight of 17.30%, is the second most important subdimension and talented employee, with 16.24%, is the third most important subdimension.

Research limitations/implications

The developed maturity model enables companies to make factual assessments with specially designed measurement instrument including incrementally evolved questions, prioritize action fields and investment strategies according to maturity index calculations and adapt to the dynamic change in the environment with spiral maturity level identification.

Originality/value

A novel spiral maturity level identification is proposed with conceptual consistency for evolutionary progress to adapt to dynamic change. A measurement instrument that is incrementally structured with 234 statements and a measurement method that is based on the priority weights and leads to calculating the maturity index are designed to assess digital maturity, create an improvement roadmap to reach higher maturity levels and prioritize actions and investments without any external support and assistance.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 12000