Search results

1 – 10 of 89
Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1091

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 4 April 2020

Marco Morabito, Alessandro Messeri, Alfonso Crisci, Junzhe Bao, Rui Ma, Simone Orlandini, Cunrui Huang and Tord Kjellstrom

Agricultural workers represent an important part of the population exposed to high heat-related health and productivity risks. This study aims to estimate the heat-related…

5506

Abstract

Purpose

Agricultural workers represent an important part of the population exposed to high heat-related health and productivity risks. This study aims to estimate the heat-related productivity loss (PL) for moderate work activities in sun and shady areas and evaluating the economic cost locally in an Italian farm and generally in the whole province of Florence. Benefits deriving by working in the shade or work-time shifting were provided. Comparisons between PL estimated in Mediterranean (Florence, Italy) and subtropical (Guangzhou, China) areas were also carried out.

Design/methodology/approach

Meteorological data were collected during summers 2017–2018 through a station installed in a farm in the province of Florence and by two World Meteorological Organization (WMO)‐certified meteorological stations located at the Florence and Guangzhou airports. These data were used to calculate the wet-bulb globe temperature and to estimate the hourly PL and the economic cost during the typical working time (from 8 a.m. to 5 p.m.) and by advancing of 1 h and 2 h the working time. Significant differences were calculated through nonparametric tests.

Findings

The hourly PL and the related economic cost significantly decreased (p < 0.05) by working in the shade and by work-time shifting. Higher PL values were observed in Guangzhou than in Florence. The decrease of PL observed by work-time shifting was greater in Florence than in Guangzhou.

Originality/value

Useful information to plan suitable heat-related prevention strategies to counteract the effects of heat in the workplace are provided. These findings are essential to quantify the beneficial effects due to the implementation of specific heat-related adaptation measures to counter the impending effects of climate change.

Details

International Journal of Productivity and Performance Management, vol. 70 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 25 March 2022

Aleksandra Pakuła, Grzegorz Muchla, Bartosz Załęcki, Michał Jakub Modzelewski and Tomasz Goetzendorf-Grabowski

This paper aims to describe the mechanical aspects of unmanned Mothership Plane and Sensing Drones. The presented conceptual system shows the idea and possible way of designing…

Abstract

Purpose

This paper aims to describe the mechanical aspects of unmanned Mothership Plane and Sensing Drones. The presented conceptual system shows the idea and possible way of designing different sizes and objective systems based on experience gained during the SAE Aero Design Competition.

Design/methodology/approach

The UAS is based on a SAE Aero Design Competition designed and manufactured Mothership Plane converted to a high endurance platform modified to launch up to six small copters. The process of designing and converting the Mothership is described. The methodology of selecting and planning either the structure or hardware of the drones is presented.

Findings

A key finding is that the presented conception of mothership plane deploying in flight a group of small sensing multirotors is achievable. Moreover, the modular build of the system provides the possibility to adapt currently existing unmanned aircrafts to be converted to the described mothership plane.

Practical implications

To conduct flight tests and to study encountered problems. Presentation of the unmanned aerial system (UAS) concept that can be used to scan an area and create 3D maps for Search and Rescue missions as well as agriculture applications.

Originality/value

The paper describes the conceptual approach to design a UAS consisting of the mothership plane and the sensing drones. The paper highlights the potential solutions gained by using such a UAS. The focus is to present a technology and system that can perform real time observations in widespread and difficult to reach areas.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 October 2022

Dongbei Bai, Lei Ye, ZhengYuan Yang and Gang Wang

Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate…

8320

Abstract

Purpose

Global climate change characterized by an increase in temperature has become the focus of attention all over the world. China is a sensitive and significant area of global climate change. This paper specifically aims to examine the association between agricultural productivity and the climate change by using China’s provincial agricultural input–output data from 2000 to 2019 and the climatic data of the ground meteorological stations.

Design/methodology/approach

The authors used the three-stage spatial Durbin model (SDM) model and entropy method for analysis of collected data; further, the authors also empirically tested the climate change marginal effect on agricultural productivity by using ordinary least square and SDM approaches.

Findings

The results revealed that climate change has a significant negative effect on agricultural productivity, which showed significance in robustness tests, including index replacement, quantile regression and tail reduction. The results of this study also indicated that by subdividing the climatic factors, annual precipitation had no significant impact on the growth of agricultural productivity; further, other climatic variables, including wind speed and temperature, had a substantial adverse effect on agricultural productivity. The heterogeneity test showed that climatic changes ominously hinder agricultural productivity growth only in the western region of China, and in the eastern and central regions, climate change had no effect.

Practical implications

The findings of this study highlight the importance of various social connections of farm households in designing policies to improve their responses to climate change and expand land productivity in different regions. The study also provides a hypothetical approach to prioritize developing regions that need proper attention to improve crop productivity.

Originality/value

The paper explores the impact of climate change on agricultural productivity by using the climatic data of China. Empirical evidence previously missing in the body of knowledge will support governments and researchers to establish a mechanism to improve climate change mitigation tools in China.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 25 September 2017

Yimer Mohammed, Fantaw Yimer, Menfese Tadesse and Kindie Tesfaye

The purpose of this paper is to investigate the patterns and trends of drought incidence in north east highlands of Ethiopia using monthly rainfall record for the period 1984-2014.

5589

Abstract

Purpose

The purpose of this paper is to investigate the patterns and trends of drought incidence in north east highlands of Ethiopia using monthly rainfall record for the period 1984-2014.

Design/methodology/approach

Standard precipitation index and Mann – Kendal test were used to analyze drought incident and trends of drought occurrences, respectively. The spatial extent of droughts in the study area has been interpolated by inverse distance weighted method using the spatial analyst tool of ArcGIS.

Findings

Most of the studied stations experienced drought episodes in 1984, 1987/1988, 1992/1993, 1999, 2003/2004 and 2007/2008 which were among the worst drought years in the history of Ethiopia. The year 1984 was the most drastic and distinct-wide extreme drought episode in all studied stations. The Mann–Kendal test shows an increasing tendencies of drought at three-month (spring) timescale at all stations though significant (p < 0.05) only at Mekaneselam and decreasing tendencies at three-month (summer) and 12-month timescales at all stations. The frequency of total drought was the highest in central and north parts of the region in all study seasons.

Originality/value

This detail drought characterization can be used as bench mark to take comprehensive drought management measures such as early warning system, preparation and contingency planning, climate change adaptation programs.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 28 June 2022

Olli Väänänen and Timo Hämäläinen

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a…

993

Abstract

Purpose

Minimizing the energy consumption in a wireless sensor node is important for lengthening the lifetime of a battery. Radio transmission is the most energy-consuming task in a wireless sensor node, and by compressing the sensor data in the online mode, it is possible to reduce the number of transmission periods. This study aims to demonstrate that temporal compression methods present an effective method for lengthening the lifetime of a battery-powered wireless sensor node.

Design/methodology/approach

In this study, the energy consumption of LoRa-based sensor node was evaluated and measured. The experiments were conducted with different LoRaWAN data rate parameters, with and without compression algorithms implemented to compress sensor data in the online mode. The effect of temporal compression algorithms on the overall energy consumption was measured.

Findings

Energy consumption was measured with different LoRaWAN spreading factors. The LoRaWAN transmission energy consumption significantly depends on the spreading factor used. The other significant factors affecting the LoRa-based sensor node energy consumption are the measurement interval and sleep mode current consumption. The results show that temporal compression algorithms are an effective method for reducing the energy consumption of a LoRa sensor node by reducing the number of LoRa transmission periods.

Originality/value

This paper presents with a practical case that it is possible to reduce the overall energy consumption of a wireless sensor node by compressing sensor data in online mode with simple temporal compression algorithms.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 6 February 2019

Aleksandrs Urbahs and Vladislavs Zavtkevics

This paper aims to analyze the application of remotely piloted aircraft (RPA) for remote oil spill sensing.

1717

Abstract

Purpose

This paper aims to analyze the application of remotely piloted aircraft (RPA) for remote oil spill sensing.

Design/methodology/approach

This paper is an analysis of RPA strong points.

Findings

To increase the accuracy and eliminate potentially false contamination detection, which can be caused by external factors, an oil thickness measurement algorithm is used with the help of the multispectral imaging that provides high accuracy and is versatile for any areas of water and various meteorological and atmospheric conditions.

Research limitations/implications

SWOT analysis of implementation of RPA for remote sensing of oil spills.

Practical implications

The use of RPA will improve the remote sensing of oil spills.

Social implications

The concept of oil spills monitoring needs to be developed for quality data collection, oil pollution control and emergency response.

Originality/value

The research covers the development of a method and design of a device intended for taking samples and determining the presence of oil contamination in an aquatorium area; the procedure includes taking a sample from the water surface, preparing it for transportation and delivering the sample to a designated location by using the RPA. The objective is to carry out the analysis of remote oil spill sensing using RPA. The RPA provides a reliable sensing of oil pollution with significant advantages over other existing methods. The objective is to analyze the use of RPA employing all of their strong points. In this paper, technical aspects of sensors are analyzed, as well as their advantages and limitations.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 17 May 2022

Charlemagne Dossou Seblodo Judes Gbemavo, Joelle Toffa, Cyrille Tchakpa, Yêyinou Laura Estelle Loko, Gustave Djedatin, Eben-Ezer Ewedje, Azize Orobiyi, Paulin Sedah and Francois Sabot

The purpose of this study is to evaluate rice farmers’ perceptions on the manifestations of the climate change and identify efficient strategies and determinants of adoption of…

2016

Abstract

Purpose

The purpose of this study is to evaluate rice farmers’ perceptions on the manifestations of the climate change and identify efficient strategies and determinants of adoption of these strategies in the Republic of Benin.

Design/methodology/approach

Surveys were conducted using participatory research appraisal tools and techniques, such as direct observation, individual interviews and field visits through a questionnaire for data collection. A total of 418 rice farmers across 39 villages located in the three climatic zones of the Republic of Benin were interviewed. Farmers’ perceptions, temperature from 1952 to 2018 and rainfall from 1960 to 2018 data obtained from meteorological stations were analysed using descriptive and inferences statistics.

Findings

All the surveyed farmers were aware of climate change and perceived diverse manifestations including the delay in rainfall regarded as the most important risk. They perceived that deforestation, no respect for the laws of nature and desacralization of morals, no respect for cultures and the traditional rainmakers are the main causes of climate change. The disruption of agricultural calendar and the reduction in rice yield were perceived as the main impacts of climate change in rice production. They used various approaches to adapt and mitigate climate change effects. The adoption of adaptation strategies was influenced either negatively or positively by the household size, land size, education level, membership to rice farmer’s association, training in rice production, access to extension services, use of improved varieties and the location in climatic zones.

Research limitations/implications

For each climatic zone of the Republic of Benin, weather data were collected in only one meteorological station.

Practical implications

The study showed that it is important to educate rice farmers on the scientific causes of climate change for better resilience. There is an urgent need to train rice farmers in irrigation and water management techniques to cope with climate variability. To promote irrigation, the authors suggest the establishment of a subsidy and credit mechanism by the government. Factors that influenced adoption of efficient adaptation strategies to climate events must be taken into account for future adaptation policies in the Republic of Benin.

Originality/value

This study provided an overview of the perceptions and adaptations of rice farmers along the climatic gradient in the Republic of Benin. Therefore, the knowledge of the determining factors of the adaptation strategies used by rice farmers could be used in the setting up of effective climate change resilience policies in Benin.

Details

International Journal of Climate Change Strategies and Management, vol. 14 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 8 March 2021

Ga Yoon Choi, Hwan Sung Kim, Hyungkyoo Kim and Jae Seung Lee

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies…

3158

Abstract

Purpose

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies to mitigate the negative impacts of heat in cities. Adopting green infrastructure and cooling pavements are some of the many ways to promote thermal comfort against heat. The purpose of this study is to improve microclimate conditions and thermal comfort levels in high-density living conditions in Seoul, South Korea.

Design/methodology/approach

This study compares six design alternatives of an apartment complex with different paving and planting systems. It also examines the thermal outcome of the alternatives under normal and extreme heat conditions to suggest strategies to secure acceptable thermal comfort levels for the inhabitants. Each alternative is analyzed using ENVI-met, a software program that simulates microclimate conditions and thermal comfort features based on relationships among buildings, vegetation and pavements.

Findings

The results indicate that grass paving was more effective than stone paving in lowering air temperature and improving thermal comfort at the near-surface level. Coniferous trees were found to be more effective than broadleaf trees in reducing temperature. Thermal comfort levels were most improved when coniferous trees were planted in paired settings.

Practical implications

Landscape elements show promise for the improvement of thermal conditions because it is much easier to redesign landscape elements, such as paving or planting, than to change fixed urban elements like buildings and roads. The results identified the potential of landscape design for improving microclimate and thermal comfort in urban residential complexes.

Originality/value

The results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Book part
Publication date: 1 October 2018

Abstract

Details

Social Media Use in Crisis and Risk Communication
Type: Book
ISBN: 978-1-78756-269-1

1 – 10 of 89