Search results

1 – 4 of 4
Article
Publication date: 13 February 2024

Ernest Orji Akudo, Godwin Okumagbe Aigbadon, Kizito O. Musa, Muawiya Baba Aminu, Nanfa Andrew Changde and Emmanuel K. Adekunle

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a…

Abstract

Purpose

The purpose of this study was to investigate the likely causes of failure of some sections of road pavements in Ajaokuta, Northcentral Nigeria. This was achieved through a geotechnical assessment of subgrade soils in affected areas.

Design/methodology/approach

The methods entailed field and laboratory methods and statistical analysis. Subgrade soil samples were retrieved from a depth of 1,000 mm beneath the failed portions using a hang auger. The soils were analyzed for natural moisture content (NMC), Atterberg limit (liquid limit, plastic limit and linear shrinkage), grain size distribution, compaction and California bearing ratio (CBR), respectively.

Findings

The results of the geotechnical tests ranged from NMC (12.5%–19.4%), sand (84%–98%), fines (2%–16%), LL (16.0%–32.2%), PL (17%–27.5%), LS (2.7%–6.4%), PI (2.5%–18.4%), maximum dry density (1756 kg/m2–1961 kg/m2), optimum moisture content (13.2%–20.2%), unsoaked CBR (15.5%–30.5%) and soaked CBR (8%–22%), respectively. Pearson’s correlation coefficient performed on the variables showed that some parameters exhibited a strong positive correlation with r2 > 0.5.

Research limitations/implications

Funding was the main limitation.

Originality/value

Comparing the results with Nigerian standards for road construction, and the AASHTO classification scheme, the subgrade soils are competent and possess excellent to good properties. The soils also exhibited very low plasticity, a high percentage of sand, high CBR and low NMC, which implies that it has the strength required for road pavement subgrades. The likely causes of the failures are, therefore, due to the use of poor construction materials, technical incompetence and poor compaction of sub-base materials, respectively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 November 2023

Vaishnavi Pandey, Anirbid Sircar, Kriti Yadav and Namrata Bist

This paper aims to conduct a detailed analysis of the industrial practices currently being used in the geothermal energy industry and to determine whether they are contributing to…

Abstract

Purpose

This paper aims to conduct a detailed analysis of the industrial practices currently being used in the geothermal energy industry and to determine whether they are contributing to any limitations. A HAZOP-based upgradation model for improvement in existing industrial practices is proposed to ensure the removal of inefficient conventional practices. The HAZOP-based upgradation model examines the setbacks, identifies its causes and consequences and suggests improvement methods comprising of modern-day technology.

Design/methodology/approach

This paper proposed a HAZOP-based upgradation model for improvement in existing industrial practices. The proposed HAZOP model identifies the drawbacks brought on by conventional practices and suggests improvements.

Findings

The study reviewed the challenges geothermal power plants currently face due to conventional practices and suggested a total of 22 upgradation recommendations. From those, a total of 11 upgradation modules comprising modern digital technology and Industry 4.0 elements were proposed to improve the existing practices in the geothermal energy industry. Autonomous robots, augmented reality, machine learning and Internet of Things were identified as useful methods for the upgradation of the existing geothermal energy system.

Research limitations/implications

If proposed recommendations are incorporated, the efficiency of geothermal energy generation will increase as cumulating setbacks will no longer degrade the work output.

Practical implications

The proposed recommendation by the study will make way for Industry 4.0 integration with the geothermal energy sector.

Originality/value

The paper uses a proposed HAZOP-based upgradation model to review issues in existing industrial practices of the geothermal energy sector and recommends solutions to overcome operability issues using Industry 4.0 technologies.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 15 August 2023

Allaeddine Athmani and Naida Ademovic

This paper aims to develop preliminary damage scenarios for unreinforced masonry buildings located in low to moderate seismic hazard areas in Algeria, taking into account the…

Abstract

Purpose

This paper aims to develop preliminary damage scenarios for unreinforced masonry buildings located in low to moderate seismic hazard areas in Algeria, taking into account the specific site effects.

Design/methodology/approach

Three soil types were considered in this analysis according to the definition of the Algerian seismic code (RPA99/2003). Peak ground acceleration values were assigned to each soil type issued from a probabilistic seismic hazard analysis (PSHA). To highlight the effect of soil conditions on the seismic vulnerability analysis of masonry buildings, a site vulnerability increment is carried out, and the macroseismic Risk-UE method has been adopted and applied by developing two main seismic scenarios according to both return periods of the PSHA, 100 and 475 years, respectively.

Findings

Based on the preliminary results of rock site condition, it can be outlined that the significant damage obtained for different earthquake scenarios discovered a substantial worldwide seismic risk to the building stock of the study area. Once the site effect is integrated into the analysis, more high values of vulnerability indexes and expected damages are obtained. Moreover, it can be concluded that soft soil (S3) is a little bit more influential than stiff soil (S2) on the final vulnerability index compared to (S1). However, the difference between the soil effect S2 and S3 on the vulnerability index can be neglected.

Research limitations/implications

Researchers are encouraged to test the mechanical approaches for more detailed outcomes of a specific building analysis.

Practical implications

This research proves to the Algerian decision-makers that due to the site effects and the vulnerability of the masonry buildings, an urgent intervention program is required even for existing buildings located in low to moderate seismic hazard areas.

Originality/value

Several seismic vulnerability types of research have been conducted in Algeria for the unreinforced masonry buildings in moderate to high seismic areas in which generally the soil effect is neglected. In this context, this research paper proves that due to the site effects and the vulnerability of the masonry buildings, special attention is required even for existing buildings located in low to moderate seismic hazard areas. With this conclusion, the requirement of taking into account the soli effect in the high seismic areas is even more pronounced and should be conducted.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 July 2023

Auf Tumwebaze Alicon and Kassim Kalinaki

Despite the sporadic evolution of artificial intelligence, the most valuable asset of any organization in the modern world is human resources. This study aims to reveal that…

Abstract

Purpose

Despite the sporadic evolution of artificial intelligence, the most valuable asset of any organization in the modern world is human resources. This study aims to reveal that partnerships between higher education institutions (HEIs) and employers will ease the process of employee mid-career development in Uganda's corporate employment sector by promoting work-based postgraduate training, and this additionally promotes human resources (HR) capacity-building for organizations.

Design/methodology/approach

The hypothesis is that contemporary employees seek out an academic mid-career development postgraduate programme that is blended to fit into the employees' work schedule. The study was a descriptive quantitative study, and a closed-ended questionnaire was sent out to groups of corporate employees online (N = 70) and 41 responded, giving a response rate of 58.5%.

Findings

Findings indicate a need for a flexible program for mid-career development and transition, the low standard deviation of (Neutral = 0.95, Disagreed = 2.64 and Agreed = 3.3) implies an insignificant deviation from the mean of responses. Indeed, over 95% agree that pursue further studies is needed but in a more flexible way.

Research limitations/implications

The study design was limited by the sample selection process and study design. In the future, the authors recommend a mixed study for both quantitative and qualitative dimensions of such studies.

Practical implications

Irrespective of gender, hierarchy and experience, employees want flexible study modes for their postgraduate. This implies that institutions of higher learning should work with the labour industry and position themselves as work-based information and communication technology (ICT)-Integrated learning theatres.

Originality/value

The move towards a collaborative strategy between academia and the employment industry is very evident in this study.

Details

Higher Education, Skills and Work-Based Learning, vol. 13 no. 5
Type: Research Article
ISSN: 2042-3896

Keywords

1 – 4 of 4