Search results

1 – 10 of 13
Open Access
Article
Publication date: 28 August 2021

Slawomir Koziel and Anna Pietrenko-Dabrowska

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three…

Abstract

Purpose

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three real-world antenna structures: narrow-band, dual-band and wideband, optimized under various design scenarios.

Design/methodology/approach

The keystone of the proposed approach is to reuse designs pre-optimized for various sets of performance specifications and to encode them into metamodels that render good initial designs, as well as an initial estimate of the antenna response sensitivities. Subsequent design refinement is realized using an iterative prediction-correction loop accommodating the discrepancies between the actual and target design specifications.

Findings

The presented framework is capable of yielding optimized antenna designs at the cost of just a few full-wave electromagnetic simulations. The practical importance of the iterative correction procedure has been corroborated by benchmarking against gradient-only refinement. It has been found that the incorporation of problem-specific knowledge into the optimization framework greatly facilitates parameter adjustment and improves its reliability.

Research limitations/implications

The proposed approach can be a viable tool for antenna optimization whenever a certain number of previously obtained designs are available or the designer finds the initial effort of their gathering justifiable by intended re-use of the procedure. The future work will incorporate response features technology for improving the accuracy of the initial approximation of antenna response sensitivities.

Originality/value

The proposed optimization framework has been proved to be a viable tool for cost-efficient and reliable antenna optimization. To the knowledge, this approach to antenna optimization goes beyond the capabilities of available methods, especially in terms of efficient utilization of the existing knowledge, thus enabling reliable parameter tuning over broad ranges of both operating conditions and material parameters of the structure of interest.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 28 July 2020

Julián Monsalve-Pulido, Jose Aguilar, Edwin Montoya and Camilo Salazar

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently…

1792

Abstract

This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently recommending digital resources. The paper presents the architectural details of the intelligent and autonomous dimensions of the recommendation system. The paper describes a hybrid recommendation model that orchestrates and manages the available information and the specific recommendation needs, in order to determine the recommendation algorithms to be used. The hybrid model allows the integration of the approaches based on collaborative filter, content or knowledge. In the architecture, information is extracted from four sources: the context, the students, the course and the digital resources, identifying variables, such as individual learning styles, socioeconomic information, connection characteristics, location, etc. Tests were carried out for the creation of an academic course, in order to analyse the intelligent and autonomous capabilities of the architecture.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 15 June 2022

Kaixuan Feng and Zhenzhou Lu

This study aims to propose an efficient method for solving reliability-based design optimization (RBDO) problems.

Abstract

Purpose

This study aims to propose an efficient method for solving reliability-based design optimization (RBDO) problems.

Design/methodology/approach

In the proposed algorithm, genetic algorithm (GA) is employed to search the global optimal solution of design parameters satisfying the reliability and deterministic constraints. The Kriging model based on U learning function is used as a classification tool to accurately and efficiently judge whether an individual solution in GA belongs to feasible region.

Findings

Compared with existing methods, the proposed method has two major advantages. The first one is that the GA is employed to construct the optimization framework, which is helpful to search the global optimum solutions of the RBDO problems. The other one is that the use of Kriging model is helpful to improve the computational efficiency in solving the RBDO problems.

Originality/value

Since the boundaries are concerned in two Kriging models, the size of the training set for constructing the convergent Kriging model is small, and the corresponding efficiency is high.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 10 January 2020

Slawomir Koziel and Anna Pietrenko-Dabrowska

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is…

Abstract

Purpose

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.

Design/methodology/approach

The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.

Findings

The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate.

Research limitations/implications

The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition.

Originality/value

The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 4 June 2021

Francisco M. Andrade Pires and Chenfeng Li

335

Abstract

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Open Access
Article
Publication date: 28 February 2024

Eyad Buhulaiga and Arnesh Telukdarie

Multinational business deliver value via multiple sites with similar operational capacities. The age of the Fourth Industrial Revolution (4IR) delivers significant opportunities…

Abstract

Purpose

Multinational business deliver value via multiple sites with similar operational capacities. The age of the Fourth Industrial Revolution (4IR) delivers significant opportunities for the deployment of digital tools for business optimization. Therefore, this study aims to study the Industry 4.0 implementation for multinationals.

Design/methodology/approach

The key objective of this research is multi-site systems integration using a reproducible, modular and standardized “Cyber Physical System (CPS) as-a-Service”.

Findings

A best practice reference architecture is adopted to guide the design and delivery of a pioneering CPS multi-site deployment. The CPS deployed is a cloud-based platform adopted to enable all manufacturing areas within a multinational energy and petrochemical company. A methodology is developed to quantify the system environmental and sustainability benefits focusing on reduced carbon dioxide (CO2) emissions and energy consumption. These results demonstrate the benefits of standardization, replication and digital enablement for multinational businesses.

Originality/value

The research illustrates the ability to design a single system, reproducible for multiple sites. This research also illustrates the beneficial impact of system reuse due to reduced environmental impact from lower CO2 emissions and energy consumption. The paper assists organizations in deploying complex systems while addressing multinational systems implementation constraints and standardization.

Details

Digital Transformation and Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0761

Keywords

Content available
Article
Publication date: 10 May 2023

Pasquale Legato and Rina Mary Mazza

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support…

Abstract

Purpose

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support decisions related to the organization of the yard area, while also accounting for operations policies and times on the quay.

Design/methodology/approach

A discrete-event simulation model is used to reproduce container handling on both the quay and yard areas, along with the transfer operations between the two. The resulting times, properly estimated by the simulation output, are fed to a simpler queueing network amenable to solution via algorithms based on mean value analysis (MVA) for product-form networks.

Findings

Numerical results justify the proposed approach for getting a fast, yet accurate analytical solution that allows carrying out performance evaluation with respect to both organizational policies and operations management on the yard area.

Practical implications

Practically, the expected performance measures on the yard subsystem can be obtained avoiding additional time-expensive simulation experiments on the entire detailed model.

Originality/value

As a major takeaway, deepening the MVA for generally distributed service times has proven to produce reliable estimations on expected values for both user- and system-oriented performance metrics.

Details

Maritime Business Review, vol. 8 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 31 October 2023

Alberto Giubilini and Paolo Minetola

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…

Abstract

Purpose

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.

Design/methodology/approach

An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.

Findings

The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.

Research limitations/implications

The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.

Practical implications

This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.

Originality/value

In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 February 2022

Vishal Singh Patyal, P.R.S. Sarma, Sachin Modgil, Tirthankar Nag and Denis Dennehy

The study aims to map the links between Industry 4.0 (I-4.0) technologies and circular economy (CE) for sustainable operations and their role to achieving the selected number of…

6741

Abstract

Purpose

The study aims to map the links between Industry 4.0 (I-4.0) technologies and circular economy (CE) for sustainable operations and their role to achieving the selected number of sustainable development goals (SDGs).

Design/methodology/approach

The study adopts a systematic literature review method to identify 76 primary studies that were published between January 2010 and December 2020. The authors synthesized the existing literature using Scopus database to investigate I-4.0 technologies and CE to select SDGs.

Findings

The findings of the study bridge the gap in the literature at the intersection between I-4.0 and sustainable operations in line with the regenerate, share, optimize, loop, virtualize and exchange (ReSOLVE) framework leading to CE practices. Further, the study also depicts the CE practices leading to the select SDGs (“SDG 6: Clean Water and Sanitation,” “SDG 7: Affordable and Clean Energy,” “SDG 9: Industry, Innovation and Infrastructure,” “SDG 12: Responsible Consumption and Production” and “SDG 13: Climate Action”). The study proposes a conceptual framework based on the linkages above, which can help organizations to realign their management practices, thereby achieving specific SDGs.

Originality/value

The originality of the study is substantiated by a unique I-4.0-sustainable operations-CE-SDGs (ISOCES) framework that integrates I-4.0 and CE for sustainable development. The framework is unique, as it is based on an in-depth and systematic review of the literature that maps the links between I-4.0, CE and sustainability.

Details

Journal of Enterprise Information Management, vol. 35 no. 1
Type: Research Article
ISSN: 1741-0398

Keywords

Content available
Article
Publication date: 26 October 2020

W.K. Kon, Noorul Shaiful Fitri Abdul Rahman, Rudiah Md Hanafiah and Saharuddin Abdul Hamid

Since the first automated container terminal (ACT) was introduced at Europe Container Terminals Delta Terminal in Port Rotterdam back in the year 1992, a lot of research had been…

4562

Abstract

Purpose

Since the first automated container terminal (ACT) was introduced at Europe Container Terminals Delta Terminal in Port Rotterdam back in the year 1992, a lot of research had been done to improve the management of ACT. However, up until recently, the number of literature available still appeared scarce. Hence, this paper aims to review the collection of literature about ACT to generate an exhaustive summary to answer the formulated review question in this study.

Design/methodology/approach

Preferred reporting items for systematic reviews and meta-analyses to narrow down the search parameters of literature retrieved so that only relevant articles were only selected. The systematic literature reviews were applied to analyse the content of the articles retrieved to determine its journal ranking, research findings and timeline of publications.

Findings

The adoption of ACT technology by container terminal operators could increase the terminal efficiency in productivity, cost reduction and environmental sustainability. Owing to global environmental awareness, the research trend of container terminal field and container terminal operator in the terminal design is much more environmentally friendly oriented.

Research limitations/implications

The limited numbers of experts in the management of ACT are causing challenges in data collections.

Practical implications

The analysis of the global ACT trend could help academicians and industrial investors to review the revolution timeline of maritime technology in port and shipping that is happening rapidly.

Originality/value

The analysis of timeline and collective literature leads to the propose of the conceptual framework to determine the relationship between increased productivity, cost reduction and environmentally sustainable.

Details

Maritime Business Review, vol. 6 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

1 – 10 of 13