Search results

1 – 10 of 28
Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

42

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 30 October 2018

Zbigniew Bieniek, Ida Mascolo and Ada Amendola

This study aims to focus on a short review on recent results dealing with the mechanical modelling and experimental characterization of a novel class of tensegrity structures…

Abstract

Purpose

This study aims to focus on a short review on recent results dealing with the mechanical modelling and experimental characterization of a novel class of tensegrity structures, named class θ = 1 tensegrity prisms. The examined structures exhibit six bars connected by two disjoint sets of strings.

Design/methodology/approach

First, the self-equilibrium problem of tensegrity θ = 1 prisms is numerically investigated for varying values of two aspect parameters and, next, their prestress stability is studied. The mechanical behavior of the examined structures in the large displacements regime under uniform compression loading is also numerically computed through a path-following procedure. Finally, the predicted constitutive response is validated through experimental tests.

Findings

The presented results highlight that the examined structures exhibit a large number of infinitesimal mechanisms from the freestanding configuration, and reveal that they exhibit tunable elastic response switching from stiffening to softening.

Originality/value

This multi-faceted elastic response is in agreement with previous literature results on the elastic response of minimal tensegrity prism, and suggests that such units can be usefully used as non-linear springs in next-generation tensegrity metamaterials.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 16 October 2018

Ada Amendola, Ida Mascolo and Gianmario Benzoni

This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the…

Abstract

Purpose

This paper aims to review recent literature results on the mechanical response of confined pentamode structures behaving either in the stretching-dominated or the bending-dominated regimes.

Design/methodology/approach

The analyzed structures consist of multilayer systems formed by pentamode lattices alternated with stiffening plates and are equipped with rigid or hinged connections.

Findings

It is shown that such structures are able to carry unidirectional compressive loads with sufficiently high stiffness, while showing markedly low stiffness against shear loads. In particular, their shear stiffness may approach zero in the stretching-dominated regime.

Originality/value

The presented results highlight the high engineering potential of laminated pentamode metamaterials as novel isolation devices to be used for the protection of buildings against shear waves.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Content available
Article
Publication date: 1 October 2006

214

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 30 March 2010

Rob Bogue

144

Abstract

Details

Sensor Review, vol. 30 no. 2
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 20 January 2012

Robert Bogue

856

Abstract

Details

Sensor Review, vol. 32 no. 1
Type: Research Article
ISSN: 0260-2288

Open Access
Article
Publication date: 4 December 2018

Luciano Feo and Fernando Fraternali

284

Abstract

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Content available
Article
Publication date: 28 June 2011

412

Abstract

Details

Sensor Review, vol. 31 no. 3
Type: Research Article
ISSN: 0260-2288

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

1 – 10 of 28