Search results

1 – 10 of 12
Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric…

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

42

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 November 2023

Serap Kiriş and Muharrem Karaaslan

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…

Abstract

Purpose

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.

Design/methodology/approach

To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.

Findings

As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.

Originality/value

Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 9 May 2023

David Audretsch, Maksim Belitski and Candida Brush

Research on financing for entrepreneurship has consolidated over the last decade. However, one question remains unanswered: how does the combination of external finance, such as…

Abstract

Purpose

Research on financing for entrepreneurship has consolidated over the last decade. However, one question remains unanswered: how does the combination of external finance, such as equity and debt capital, and internal finance, such as working capital, affect the likelihood of grant funding over time? The purpose of this study is to analyse the relationship between different sources of financing and firms' ability to fundraise via innovation grants and to examine the role of female chief executive officer (CEO) in this relationship. Unlike equity and debt funding, innovation grants manifest a form of innovation acknowledgement and visibility, recognition of potential commercialization of inovation.

Design/methodology/approach

The authors use firm-level financial data for 3,034 high-growth firms observed in 2015, 2017 and 2019 across 35 emerging sectors in the United Kingdom (UK) to test the factors affecting the propensity of high-growth firms to secure an innovation grant as a main source of fundraising for innovation during the early stages of product commercialization.

Findings

The results do not confirm gender bias for innovation fundraising in new industries. This contrasts with prior research in the field which has demonstrated that access to finance is gender-biased. However, the role of CEO gender is important as it moderates the relationship between the sources of funding and the likelihood of accessing the grant funding.

Research limitations/implications

This study does not analyse psychological or neurological factors that could determine the intrinsic qualities of male and female CEOs when making high-risk decisions under conditions of uncertainty related to innovation. Direct gender bias with regards to access to innovation grants could not be assumed. This study offers important policy implications and explains how firms in new industries can increase their likelihood of accessing a grant and how CEO gender can moderate the relationship between availability of internal and external funding and securing a new grant.

Social implications

This study implicates and empirically demonstrates that gender bias does not apply in fundraising for innovation in new industries. As female CEOs represent various firms in different sectors, this may be an important signal for investors in new product development and innovation policies targeting gender bias and inclusion.

Originality/value

The authors draw on female entrepreneurship and feminist literature to demonstrate how various sources of financing and gender change the likelihood of grant funding in both the short and long run. This is the first empirical study which aims to explain how various internal and external sources of finance change the propensity of securing an innovation grant in new industries.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

Article
Publication date: 18 January 2023

Amirul Syafiq, Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO)…

Abstract

Purpose

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.

Design/methodology/approach

The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.

Findings

The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.

Research limitations/implications

Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.

Practical implications

The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.

Originality/value

This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 12